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Abstract

Although uncertainty about structures of environmental models (conceptual uncertainty) is often acknowledged to be the main
source of uncertainty in model predictions, it is rarely considered in environmental modelling. Rather, formal uncertainty analyses
have traditionally focused on model parameters and input data as the principal source of uncertainty in model predictions. The tra-
ditional approach to model uncertainty analysis, which considers only a single conceptual model, may fail to adequately sample the
relevant space of plausible conceptual models. As such, it is prone to modelling bias and underestimation of predictive uncertainty.

In this paper we review a range of strategies for assessing structural uncertainties in models. The existing strategies fall into two
categories depending on whether field data are available for the predicted variable of interest. To date, most research has focussed
on situations where inferences on the accuracy of a model structure can be made directly on the basis of field data. This corresponds
to a situation of ‘interpolation’. However, in many cases environmental models are used for ‘extrapolation’; that is, beyond the sit-
uation and the field data available for calibration. In the present paper, a framework is presented for assessing the predictive uncer-
tainties of environmental models used for extrapolation. It involves the use of multiple conceptual models, assessment of their
pedigree and reflection on the extent to which the sampled models adequately represent the space of plausible models.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction ture (=conceptual model). Other authors further distin-

guish uncertainty in model context, model assumptions,

1.1. Background

Assessing the uncertainty of model simulations is
important when such models are used to support deci-
sions about water resources [6,33,23,39]. The key
sources of uncertainty in model predictions are (i) input
data; (ii) model parameter values; and (iii) model struc-
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expert judgement and indicator choice [46,54,48] but
these are beyond the scope of this paper. Uncertainties
due to input data and due to parameter values have been
dealt with in many studies, and methodologies to deal
with these are well developed. However, no generic
methodology exists for assessing the effects of model
structure uncertainty, and this source of uncertainty is
frequently neglected.

Any model is an abstraction, simplification and inter-
pretation of reality. The incompleteness of a model
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structure and the mismatch between the real causal
structure of a system and the assumed causal structure
as represented in a model always result in uncertainty
about model predictions. The importance of the model
structure for predictions is well recognised, even for sit-
uations where predictions are made on output variables,
such as discharge, for which field data are available
[16,8]. The considerable challenge faced in many appli-
cations of environmental models is that predictions are
required beyond the range of available observations,
either in time or in space, e.g. to make extrapolations
towards unobservable futures [2] or to make predictions
for natural systems, such as ecosystems, that are likely
to undergo structural changes [4]. In such cases, uncer-
tainty in model structure is recognised by many authors
to be the main source of uncertainty in model predic-
tions [44,13,31,28].

1.2. An example — five alternative conceptual models

The problem is illustrated for a study conducted by
the County of Copenhagen in 2000 involving a real
water management decision [11,37]. The County of
Copenhagen is the authority responsible for water
resources management in the county where the city of
Copenhagen abstracts groundwater for most of its water
supply. According to a new Water Supply Act the
county had to prepare an action plan for protection of
groundwater against pollution. As a first step, the
county asked five groups of Danish consulting firms to
conduct studies of the aquifer’s vulnerability towards
pollution in a 175 km? area west of Copenhagen, where
the groundwater abstraction amounts to about 12 mil-
lion m*/year. The key question to be answered was:
which parts of this particular area are most vulnerable
to pollution and need to be protected? The five consul-
tants were among the most well reputed consulting firms
in Denmark, and they were known to have different
views and preferences on which methodologies are most
suitable for assessing vulnerability. As the task was one
of the first consultancy studies on a new major market
for preparation of groundwater protection plans it was
considered a prestigious job to which the consultants
generally allocated some of their most qualified
professionals.

The five consultants used significantly different
approaches. One consultant based his approach on
annual fluctuations of piezometric heads assuming that
larger fluctuations represent greater interaction between
aquifer and surface water systems and hence a larger
vulnerability. Several consultants used the DRASTIC
multi-criteria method [1], but modified it in different
ways by changing weights and adding new, mainly geo-
chemically oriented, criteria. One consultant based his
approach on advanced hydrological modelling of both
groundwater and surface water systems using the MIKE

SHE code [40], while two other consultants used simpler
groundwater modelling approaches. Thus, the five con-
sultants had different perceptions of what causes
groundwater pollution and used models with different
processes and causal relationships to describe the possi-
bility of groundwater pollution in the area. In addition,
their different interpretations and interpolations made
from common field data resulted in significantly differ-
ent figures for e.g. areal means of precipitation and
evapotranspiration and the thickness of various geolog-
ical layers [37].

The conclusions of the five consultants regarding vul-
nerability to nitrate pollution are shown in Fig. 1. It is
apparent that the five estimates differ substantially from
each other. In the present case, no data exist to validate
the model predictions, because the five models were used
to make extrapolations. Thus, it is not possible, from
existing field data, to tell which of the five model esti-
mates are more reliable. The differences in prediction
originate from two main sources: (i) data and parameter
uncertainty and (ii) conceptual uncertainty. Although
the data and parameter uncertainties were not explicitly
assessed by any of the consultants (as is common in such
studies), the substantial differences in model structures
and the fact that the consultants all used the same raw
data point to structural uncertainty as the main cause
of difference between the five model results and as a
major source of uncertainty in model predictions.
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Fig. 1. Model predictions on aquifer vulnerability towards nitrate
pollution for a 175 km? area west of Copenhagen [11].
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Usually a water manager bases their decisions on the
conclusions from only one study. The uniqueness of the
present study was that five consultants were asked to
answer the same question on the basis of the same data.
In this respect the differences between the five estimates
are striking and clearly do not provide a sound basis for
deciding anything about which areas should be pro-
tected. A worrying question, which is left unanswered,
is whether the basis for decisions is similarly poor in
the many other cases where only a single conceptual
model has been adopted and where millions of DKK
have subsequently been used to prepare and implement
action plans.

1.3. Objective and outline of paper

The objective of this paper is to review possible strat-
egies for dealing with model structure errors and to out-
line a framework for handling the effects of model
structure errors on predictive uncertainty, with particu-
lar emphasis on situations where model predictions rep-
resent extrapolations to situations not covered by
calibration data and are often outside the domain on
which our knowledge on the dynamics of the system
and our understanding of its causal relationships is
based.

The paper is organised so that reviews of existing
strategies and the discussion of their potentials and lim-
itations are given in Section 2. A new framework is pre-
sented in Section 3 for analysing the uncertainties due to
model structure errors when models are used for making
extrapolations beyond their calibration base. Finally,
the problems and perspectives of the new framework

are discussed in Section 4. The terminology used is
defined in Appendix.

2. Review of possible strategies
2.1. Classification

The existing strategies for assessing uncertainty due
to incomplete or inadequate model structure may be
grouped into the categories shown in Fig. 2. The most
important distinction is whether data exist that makes
it possible to make inferences on the model structure
uncertainty directly. This requires that data are available
for the output variable of predictive interest and for con-
ditions similar to those in the predictive situation. In
other words it is a distinction between whether the
model predictions can be considered as interpolations
or extrapolations relative to the calibration situation.

The two main categories are thus equivalent to differ-
ent situations with respect to model validation tests.
According to Klemes’ classical hierarchical test scheme
[26,38], the interpolation case corresponds to situations
where the traditional split-sample test is suitable, while
the extrapolation case corresponds to situations where
no data exist for the concerned output variable
(proxy-basin test) or where the basin characteristics
are considered non-stationary, e.g. for predictions of
effects of climate change or effects of land use change
(differential split-sample test).

In the review of existing strategies given below exam-
ples of studies have been selected to illustrate the classi-
fication and the common approaches. It is not an

Availability of data for
model validation test?

/\

Target data exist
(interpolation)

N

No direct data
(extrapolation)

e

Increase Estimate Multiple .
Expert Pedigree
parameter structural conceptual O .
. elicitation analysis
uncertainty term models
Intermediate data
No data at all

(differential split-
sample case)

(proxy basin case)

Fig. 2. Classification of existing strategies for assessing conceptual model uncertainty.



J.C. Refsgaard et al. | Advances in Water Resources 29 (2006) 1586—1597 1589

exhaustive review, but illustrates the range of
approaches available to diagnose structural uncertainty
in models.

2.2. Data exist — interpolation

In this situation, calibration is usually carried out
against a sample of the existing field data to ensure some
kind of optimal parameter values, and then the model
predictions are compared with the remaining (‘indepen-
dent’) field data. The deviations between model predic-
tions and independent field observations can be used
to infer the model’s conceptual error. Different method-
ologies can be used in this respect.

2.2.1. Increasing parameter uncertainty to account
for structural uncertainty

One strategy is to increase the parameter uncertainty
to a level where it is assumed to compensate for omitting
model structure error from the analysis. Van Griensven
and Meixner [45] provide an example of this. They
assess the total predictive uncertainty without identify-
ing or quantifying the underlying sources of uncertainty.
They use the split-sample approach assessing ranges of
predictive uncertainty from analyses of predictions and
data for a period different from the calibration period.
Their total predictive uncertainty is assessed by increas-
ing the model parameter uncertainty beyond the magni-
tudes estimated during calibration to a level where the
resulting predictive uncertainty intervals bracket the
observations. This technique does not introduce a sepa-
rate stochastic term for the structural uncertainty, but
represents the structural term in the parameter term.
The model structure error is likely to influence the model
simulations in non-random and temporally varying
ways. By compensating the model structure error by
increasing the variance of a temporally constant random
variable the results from this approach can be ques-
tioned, particularly if used for predictions in situations
where split-sample tests are not made.

2.2.2. Estimation of the structural uncertainty term
Other strategies attempt to estimate the structural
contribution to uncertainty in the model predictions.
An example of such an approach is given by Radwan
et al. [35], who estimate the total predictive uncertainty
from a statistical analysis of the residuals between model
predictions and observations. Further, they analyse the
propagated uncertainties from model input and param-
eter values. By subtracting these two uncertainties from
the total predictive uncertainty they assign the remain-
ing predictive uncertainty to be an effect of model struc-
ture uncertainty. It is then possible to add the model
structure uncertainty when making other predictions.
This approach assumes that the uncertainties from dif-
ferent sources are additive. This assumption is question-

able, because the combination of uncertainties is often
non-linear due to interactions, correlations and depen-
dencies between variables in a model. It also assumes
that the differences in predictions and observations are
caused by structural error and not by the poor specifica-
tion of input and parameter uncertainty, nor by errors in
the observations.

Vrugt et al. [53] present another stochastic approach
based on a simultaneous parameter optimisation and
data assimilation with an ensemble Kalman filter. By
specifying values for measurement error and a so-called
‘stochastic forcing term’, representing structural uncer-
tainty, they are able to estimate the dynamic behaviour
of the model structure uncertainty. Both techniques
assume a smooth contribution from structural uncer-
tainty, but an important advantage of the latter is that
parameter innovations (an output from the Kalman fil-
ter) may be used to diagnose non-stationarity in system
structure.

2.3. No direct data — extrapolation

In cases where model structure errors cannot be
assessed directly due to a lack of relevant data, the main
strategy is to do the extrapolation with multiple concep-
tual models. Two supporting methods can be used here
for the generation and qualification of each of the alter-
native models: expert elicitation and pedigree analysis
(Fig. 2).

2.3.1. Multiple conceptual models

In the scenario approach a number of alternative
conceptual models are considered. For each of these,
the model input and parameter uncertainties may be
analysed and the differences between model predictions
are then seen as a measure of the model structure uncer-
tainty. The idea of using alternative or competing candi-
date model structures was introduced in water quality
modelling some time ago [5]. The issue typically dealt
with here is whether models developed for current con-
ditions can yield correct predictions when used under
changed control. Van Straten and Keesman [50] note
in this respect that good performance at the calibration
stage does not guarantee correctly predicted behaviour,
due to non-stationarity of the underlying processes in
space or time.

The multiple modelling approach has also been used
in flood forecasting. For example, Butts et al. [8] use 10
different model structures to evaluate structural uncer-
tainty in flood predictions. They conclude that exploring
an ensemble of model structures provides a useful
approach in assessing simulation uncertainty.

In groundwater modelling different conceptual mod-
els are typically based on different geological interpreta-
tions [18,43,42,30,34]. Hgjberg and Refsgaard [21]
present an example using three different conceptual
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models, based on three alternative geological interpreta-
tions for a multi-aquifer system in Denmark. Each of
the models was calibrated against piezometric head data
using inverse technique. The three models provided
equally good and very similar predictions of groundwa-
ter heads, including well field capture zones. However,
when using the models to extrapolate beyond the cali-
bration data to predictions of flow pathways and travel
times the three models differed dramatically. When
assessing the uncertainty contributed by the model
parameter values, the overlap of uncertainty ranges
between the three models significantly decreased when
moving from groundwater heads to capture zones and
travel times. They conclude that the larger the degree
of extrapolation, the more the underlying conceptual
model dominates over the parameter uncertainty and
the effect of calibration.

The strategy of applying several alternative models
based on codes with different model structures is also
common in climate change modelling. In its description
of uncertainty related to model predictions of both pres-
ent and future climates the Intergovernmental Panel on
Climate Change (IPCC) [22] bases its evaluation on sce-
narios of many (up to 35) different models. The same
strategy is followed in the dialogue model [52]. Dialogue
is a so-called integrated assessment model (IAM) of cli-
mate change. It has been developed as an interactive
decision-support tool for energy supply policy making.
Dialogue simulates the cause effect chain of climate
change, using mono-disciplinary sub-models for each
step in the chain. The chain starts with scenarios for eco-
nomic growth, energy demand, fuel mix etc., leading to
emissions of greenhouse gasses, leading to changes in
atmospheric composition, leading to radiative forcing
of the climate, leading to climate change, leading to
impacts of climate change on societies and ecosystems.
Rather than selecting one mono-disciplinary sub-model
for each step, as most other climate IAMs do, dialogue
uses multiple models for each step (for instance, three
different carbon cycle models, simplified versions of five
different global climate model — outcomes, etc.), repre-
senting the major part of the spectrum of expert opinion
in each discipline.

2.3.2. Expert elicitation

Expert elicitation can be used as a supporting method
in uncertainty analysis. It is a structured process to elicit
subjective judgements and ideas from experts. It is
widely used in uncertainty assessment to quantify uncer-
tainties in cases where there is no or too few direct
empirical data available to infer uncertainty. Usually
the subjective judgement is represented as a probability
density function reflecting the experts’ degree of belief.
Expert elicitation aims to specify uncertainties in a struc-
tured and documented way, ensuring the account is both
credible and traceable to its assumptions. Typically it is

applied in situations where there is scarce or insufficient
empirical material for a direct quantification of uncer-
tainty [20]. An example with use of expert elicitation
to estimate probabilities of alternative conceptual mod-
els is given by Meyer et al. [29]. They assessed probabil-
ities as subjective values, from expert elicitation,
reflecting a belief about the relative plausibility of each
model based on its apparent consistency with available
knowledge and data.

Expert elicitation can also be used to generate ideas
about alternative causal structures (conceptual models)
that govern the behaviour of a system. Techniques used
in decision analysis include group model building [51]
and the hexagon method [19] but these techniques usu-
ally aim to achieve consensus. From the point of view
of model structure uncertainty, these elicitation tech-
niques could perhaps be used to generate alternative
conceptual models.

2.3.3. Pedigree analysis

Another supporting method is pedigree analysis. The
idea comes from Funtowicz and Ravetz [17], who note
that statistical uncertainty in terms of inexactness does
not cover all relevant dimensions of uncertainty, includ-
ing the methodological and epistemological dimensions.
To promote a more differentiated insight into uncertainty
they propose to extend good scientific practice with five
qualifiers for quantitative scientific information: numeral
unit, spread, assessment, and pedigree (NUSAP). By
adding expert judgement of reliability (assessment) and
systematic multi-criteria evaluation of the processes by
which numbers have been produced (pedigree), NUSAP
has extended the statistical approach to uncertainty (inex-
actness) with the methodological (unreliability) and epis-
temological ignorance dimensions. By providing a
separate qualification for each dimension of uncertainty,
it enables flexibility in their expression.

Each special sort of information has its own aspects
that are key to its pedigree, so different pedigree matrices
using different pedigree criteria can be used to qualify
different sorts of information. Early applications of ped-
igree analysis of environmental models have focussed on
parameter pedigree, using proxy representation, empiri-
cal basis, methodological rigor, theoretical understand-
ing and validation as pedigree criteria. Later on,
pedigree analysis has been extended to assessment of
model assumptions and problem framing [49,12].

2.4. Discussion of strengths/weaknesses and potentials/
limitations

The strategies used in ‘interpolation’, i.e. for situa-
tions that are similar to the calibration situation with
respect to variables of interest and conditions of the nat-
ural system, have the advantage that they can be based
directly on field data. A fundamental weakness is that
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field data are themselves uncertain. Nevertheless, in
many cases, they can be expected to provide relatively
accurate estimates of, at least, the total predictive uncer-
tainty for the specific measured variable and for the
same conditions as those in the calibration and valida-
tion situation. Some of the methods cannot differentiate
how the total predictive uncertainty originates from
model input, model parameter and model structure
uncertainty. Other methods attempt to do so. However,
this distinction is, as recognised by many authors, e.g.
Vrugt et al. [53], problematic. In the case of uncalibrated
models, the parameter uncertainty is very difficult to
assess quantitatively, and wrong estimates of model
parameter uncertainty will influence the estimates of
model structure uncertainty. In the case of calibrated
models, estimates of model parameter uncertainty can
often be derived from autocalibration routines. An inad-
equate model structure will, however, be compensated
by biased parameter values to optimise the model fit
with field data during calibration. Hence, the uncer-
tainty due to model structure will be underestimated in
this case.

A more serious limitation of the strategies depending
on observed data is that they are only applicable for sit-
uations where the output variables of interest are mea-
sured (e.g. [35,45,53]). While relevant field data are
often available for variables such as water levels and
water flows, this is usually not the case for concentra-
tions, or when predictions are desired for scenarios
involving catchment change, such as land use change
or climate change. Another serious limitation stems
from an assumption that the underlying system does
not undergo structural changes, such as changes in eco-
system processes due to climate change.

The strategy that uses multiple conceptual models
benefits from an explicit analysis of the effects of alterna-
tive model structures. Furthermore, it makes it possible
to include expert knowledge on plausible model struc-
tures. This strategy is strongly advocated by Neuman
and Wierenga [31] and Poeter and Anderson [34]. They
characterise the traditional approach of relying on a sin-
gle conceptual model as one in which plausible concep-
tual models are rejected (in this case by omission). They
conclude that the bias and uncertainty that results from
reliance on an inadequate conceptual model are typi-
cally much larger than those introduced through an
inadequate choice of model parameter values.

This view is consistent with Beven [7] who outlines a
new philosophy for modelling of environmental systems.
The basic aim of his approach is to extend traditional
schemes with a more realistic account of uncertainty,
rejecting the idea that a single optimal model exists for
any given case. Instead, environmental models may be
non-unique in their accuracy of both reproduction of
observations and prediction (i.e. unidentifiable or equifi-
nal), and subject to only a conditional confirmation, due

to e.g. errors in model structure, calibration of parame-
ters and period of data used for evaluation. A weakness
of the multiple modelling strategy, is the absence of
quantitative information about the extent to which each
model is plausible. Furthermore, it may be difficult to
sample from the full range of plausible conceptual mod-
els. In this respect, expert knowledge on which the for-
mulations of multiple conceptual models are based, is
an important and unavoidable subjective element. The
level of subjectivity can be reduced if the scenarios are
generated in a formalised and reproducible manner.
For example, this is possible with the TPROGS proce-
dure [9,10], by which alternative geological models can
be generated stochastically. The subjectivity does not
disappear with this approach. Rather, it is transferred
from formulation of the geological model itself to
assumptions on probability functions and correlation
structures of the various geological units that are more
easily constrained in practice.

The strategy of expert elicitation has the advantage
that subjective expert knowledge can be included in
the evaluation. It has the potential to make use of all
available knowledge including knowledge that cannot
be easily formalised otherwise. It can include views of
sceptics, and reveals the level of expert disagreement
on certain estimates. Expert elicitation also has several
limitations. The fraction of experts holding a given view
is not proportional to the probability of that view being
correct. One may safely average estimates of model
parameters, but if the expert’s models were incommen-
surate, one cannot average models [25]. If differences
in expert opinion are irresolvable, weighing and combin-
ing the individual estimates of distributions is impossi-
ble. In practice, the opinions are often weighted
equally, although sometimes self-rating is used to obtain
a weight-factor for the experts competence. Finally, the
results of expert elicitation tend to be sensitive to the
selection of the experts whose estimates are gathered.

In a review of four different case studies in which ped-
igree analysis was applied, Van der Sluijs et al. [49] show
that pedigree analysis broadens the scope of uncertainty
assessment and stimulates scrutiny of underlying meth-
ods and assumptions. Craye et al. [12] reported similar
experiences. It facilitates structured, creative thinking
on conceivable sources of error and fosters an enhanced
appreciation of the issue of quality in information. It
thereby enables a more effective criticism of quantitative
information by providers, clients, and also users of all
sorts, expert and lay. It provides differentiated insight
in what the weakest parts of a given knowledge base
are. It is flexible in its use and can be used on different
levels of comprehensiveness: from a ‘back of the enve-
lope’ sketch based on self-elicitation to a comprehensive
and sophisticated procedure involving structured infor-
med in-depth group discussions, covering each pedigree
criterion. The scoring of pedigree criteria is to a certain
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degree subjective. Subjectivity can partly be remedied by
the design of unambiguous pedigree matrices and by
involving multiple experts in the scoring. The choice of
experts to do the scoring is also a potential source of
bias. The method is relatively new, with a limited (but
growing) number of practitioners. There is as yet no set-
tled guideline for good practice. We must keep in mind
that it is not a panacea for the problem of unquantifiable
uncertainty.

3. New framework

We propose that conceptual uncertainty can be
assessed by adopting a protocol based on the six cle-
ments shown in Fig. 3. The central aim is to establish
a number of plausible conceptual models, with a range
that adequately samples the space of possible conceptual
models, to evaluate the tenability of each conceptual
model and the overall range of models selected in rela-
tion to the perceived uncertainty on model structure
and to propagate the uncertainties in each case.

STEP 1: Formulate a conceptual model. A conceptual
model is established. Since we have defined a conceptual
model as a combination of our qualitative process
understanding and the simplifications acceptable for a
particular modelling study, a conceptual model becomes
highly site-specific and even case-specific. For example a
conceptual model of an aquifer may be described as

Formulate a conceptual

model ¢

Set up and calibrate
model

Sulfficient conceptual
models?

Perform validation tests
and accept/reject models

Evaluate tenability and
completeness of
conceptual models

!

Make model predictions
and assess uncertainty

Fig. 3. Protocol for assessing conceptual model uncertainty.

two-dimensional for a study focussing on regional
groundwater heads, while it may need to include three-
dimensional geological structures for detailed simulation
of contaminant transport. Formulating a new concep-
tual model may involve changing or refining the model
structure, e.g. by modifying the hydrogeological inter-
pretations (in the case of groundwater models), dimen-
sionality, temporal and spatial resolution, initial and
boundary conditions and process descriptions (govern-
ing equations).

STEP 2: Set up and calibrate model. On the basis of
the formulated conceptual model a site- and case-spe-
cific model is set up. Subsequently the model is cali-
brated and the model parameter uncertainty assessed.
For the purposes of ‘interpolation’ (i.e. relevant obser-
vations are available), the parameter uncertainty can
reasonably be constrained through calibration. How-
ever, for the case of ‘extrapolation’, the risk of calibrat-
ing model parameters for prediction of unobserved
variables is that the model becomes biased for the unob-
served variable.

STEP 3: Sufficient conceptual models? The first two
steps are repeated until sufficient conceptual models
are included. This judgement will be influenced by the
practical constraints on including additional models
and the desire to include additional conceptual models
that are substantially different from those already
included.

STEP 4: Perform validation tests (to the extent data
availability allows). In order to evaluate how well the
models describe the system in question, the perfor-
mances of each of the models are tested by comparing
model predictions with independent field data, i.e. data
not used for calibration. This may be achieved by split-
ting the sample data into a calibration and validation
set, or, alternatively, by cross-validation (e.g. bootstrap-
ping: [15]) against ‘independent data’. The models whose
predictive capability is deemed low are discarded and
the reasons for these predictive failures are explored,
where possible, for insight into the origins of structural
uncertainty. In ‘extrapolation’ cases, data will usually
not be available for validation tests and STEP 4 must
be skipped. However, in some cases, it is possible to test
‘intermediate’ model results. For example a groundwa-
ter model aimed at prediction of concentration values
can often be tested against groundwater head and dis-
charge data, or sparse concentration data may be avail-
able for parts of the study area.

STEP 5: Evaluate tenability and completeness of con-
ceptual models. The aim of this step is to analyse the
retained models with respect to their predictive bias
and uncertainty. This has two elements: (i) to evaluate
the tenability of each conceptual model; and (ii) as far
as possible, to evaluate the extent to which the retained
models represent the space of plausible conceptual mod-
els. The tenability of the conceptual models is evaluated
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Pedigree matrix for evaluating the tenability of a conceptual model
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Theoretical understanding
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(in view of the

phenomenon it describes)

Competing schools

Somewhat plausible

Aggregated parameterised

meta model

Accepted theory with
partial nature and

Modelled/derived data indirect

measurements

Well correlated but not

measuring the same thing

limited consensus on reliability

Embryonic field

Not very plausible

Grey box model

Preliminary theory

Educated guesses indirect approx.

rule of thumb estimate

Weak correlation but

commonalties in measure

No opinion

Black box model Not at all plausible

Crude speculation

Crude speculation

Not correlated and not

clearly related

through expert reviews. First, the strength of the tenabil-
ity of each conceptual model is evaluated by using the
pedigree matrix in Table 1. A structured procedure for
the elicitation of pedigree scores is given by Van der Slu-
ijs et al. [47]. Note that there is no need to arrive at a
consensus pedigree score for each criterion: if experts
disagree on the pedigree scores for a given model, this
reflects further epistemological uncertainty surrounding
that model. Next, the adequacy of the retained concep-
tual models to represent the range of plausible models is
evaluated. This is an assessment of whether the space of
the retained conceptual models is sufficient to encapsu-
late the relevant range of plausible conceptual models
without becoming impractical. This has strong similari-
ties to Dunn’s concept of context validation [14]. Con-
text validity refers to the validity of inferences that we
have estimated the proximal range of rival hypotheses.
Context validation can be performed by a bottom-up
process to elicit from experts rival hypotheses on causal
relations governing the dynamics of a system. One could
argue that an infinite number of conceivable models
might exist. However, it has been shown in projects
where such elicitation processes were used, that the
cumulative distribution of unique rival models flattens
out after consultation of a limited number of experts,
usually somewhere between 20 and 25 when chosen with
diverse enough backgrounds [27].

STEP 6: Make model predictions and assess uncer-
tainty. Together with model predictions of the desired
variables, uncertainty assessments are carried out. This
will typically include uncertainty in input data and
parameter values in addition to the conceptual uncer-
tainty. Furthermore, on the basis of the goodness of
the conceptual models, evaluated in STEP 5 the good-
ness of the assessed predictive uncertainty associated
with the model structure should be evaluated.

4. Discussion and conclusions
4.1. Methodologies to assess conceptual uncertainty

As discussed above, the existing strategies fall into
two main categories, each with limitations. The strate-
gies where model structure errors are assessed from
observed data are confined to interpolation cases,
understood as cases where the model can be calibrated
and validated against field data for the variables of pre-
dictive interest and where the natural system does not
undergo structural change. The strategies used for situ-
ations involving extrapolation depend either on multiple
conceptual models (preferred) or on expert elicitation or
pedigree analysis for a single conceptual model (usually
less preferred).

The novelty of our proposed framework is the combi-
nation of multiple conceptual models and the pedigree
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approach for assessing the overall tenability of these
models in one formalised protocol. Some of our pro-
posed steps are similar to other approaches for dealing
with equifinality, multiple possible models and the
rejection of non-behavioural model [6,31]. Other steps
are based on qualitative approaches, including expert
knowledge in a structured manner [20,49]. The aim of
our new framework is not to identify the “true’” model
structure or the cause of the errors in the existing model
structure. Instead, we propose an approach that inte-
grates different types of knowledge, not previously com-
bined, such as quantitative and qualitative uncertainty,
to estimate the impact of model structure uncertainty
on model predictions.

The GLUE approach (generalised likelihood uncer-
tainty estimation, [6,7]) also operates with a range of
alternative models. Although almost all applications
of GLUE reported so far operate with only one model
structure and many alternative model parameter sets, it
is possible to use GLUE with alternative model struc-
tures [24]. In addition to prescribing multiple concep-
tual models, an important difference between our
proposed approach and GLUE is that we recommend
parameter optimisation is conducted as part of the cal-
ibration in order to take full advantage of the informa-
tion in field data. There are different opinions about
whether calibration by parameter optimisation is advis-
able or not. The main advantage of calibration is that it
improves the ability of the model to reproduce hydro-
logical behaviour of a system within the limits of
observed behaviour [31]. An important by-product is
that it provides useful information about the uncer-
tainty of model parameters. The disadvantage is that
parameter optimisation may result in biased parameter
values to compensate for errors in model structure and
that many parameter sets (i.e. many models) perform
more or less equally well but provide different results.
In implementing our framework, model calibration
might be skipped and many models with different
parameter sets retained, as in the GLUE approach.
The reason we are not advocating such an approach
is partly for pragmatic reasons (very large computa-
tional requirements) and partly that we aim to focus
on model structure uncertainty rather than parameter
uncertainty.

Although intended for use in a very different context,
the central aim behind our proposed protocol is similar
to the approach of IPCC [22], who assign a level of con-
fidence to their assessment of climate change by evaluat-
ing predictions from multiple models. The level of
confidence placed in a particular finding reflects both
the degree of consensus amongst modellers and the
quantity of evidence that is available to support the find-
ing. IPCC [22] classifies the confidence qualitatively in
three levels: (i) ‘well established’, (ii) ‘evolving’ and (iii)
‘speculative’.

4.2. Critical issues for implementing the new protocol

4.2.1. Performance criteria — threshold for acceptingl/
rejecting models

A critical issue in relation to acceptance/rejection of
models (STEP 4 above) is how to define performance
criteria. We agree with Beven [7] that any conceptual
model is (known to be) wrong in an absolute sense,
and hence that any model will be rejected if we investi-
gate it in sufficient detail and specify very high perfor-
mance criteria. On the other hand, the whole point in
modelling is to simplify.

A good reference for model performance is to com-
pare it with uncertainties of the available field observa-
tions. If the model performance is within this
uncertainty range we may characterise the model as
good enough. However, usually it is less straightfor-
ward. For example, how wide should the confidence
bands be before we reject models or accept them within
observational uncertainties — ranges corresponding to
65%, 95% or 99%? Indeed, the differences between
95% and 99% may be significant in practical terms. Do
we always then reject a model if it cannot perform
within the observational uncertainty range? How rea-
sonable are our estimates of uncertainty in observa-
tions? In many cases, even the results from less
accurate models may be very useful.

Another reference for what is acceptable accuracy is
the use of a benchmark model as discussed by e.g. Sei-
bert [41]. The difficulty is then transferred to selecting
an appropriate benchmark.

Our answer is that the decision on performance crite-
ria must, in general, be taken in a socio-economic con-
text, for which predictive uncertainties must be clearly
explained and open to interpretation beyond small
groups of scientists. Thus, we believe that the accuracy
criteria cannot be decided universally by modellers or
researchers, but must be different from case to case
depending on the nature of a decision and the risks
involved.

4.2.2. Qualitative assessment of tenability of conceptual
models

Pedigree analysis structures the critical appraisal of
alternative model structures and provides insight in the
state of knowledge on which each of the conceivable
model structures is based. However, it does not give
an indication of the relative quality of the various model
structures. With reference to Table 1, the pedigree anal-
ysis for a simple statistical model (A) and a complex
mechanistic model (B) could, for example, result in
statements like:

e Model A is weakly correlated to the predicted vari-
able (Proxy, score 1), based on a large sample of
direct measurements (Quality and quantity, score
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4), built on a preliminary theory and a black box
model (Theoretical understanding, score 1; Represen-
tation of mechanisms, score 1), somewhat plausible
(Plausibility, score 2) and controversial among col-
leagues (Colleague consensus, score 2);

e Model B exactly addresses the desired predictive var-
iable (Proxy, score 4), is based on data with rule of
thumb estimates (Quality and quantity, score 1), built
on a well-established theory with model equations
reflecting high process details (Theoretical under-
standing, score 4; Representation of mechanisms,
score 4), reasonably plausible and accepted by all col-
leagues except rebels (Plausibility and Colleague con-
sensus, score 3).

Such statements cannot be integrated in a quantita-
tive uncertainty analysis in terms of probabilities, but
they should be available as the best possible scientifically
based characterisation of uncertainties and as such be
made available to those involved in the decision making
process.

Furthermore, as the selected conceptual models can
never cover all possibilities, but instead cover limited
range, it is important to emphasise that the overall
uncertainty of model predictions cannot be assessed in
an absolute sense, only in a conditional or relative sense
[7,31]. Our suggested method does not alter this funda-
mentally. However, we believe that the outcome of the
proposed formalised review is a qualitative assessment
that is more useful in a decision making context than
unstructured information, or verbose information from
scientific outlets that is not always available to the deci-
sion maker. The challenge is to design environmental
management strategies that are robust against the uncer-
tainties identified. Inclusion of a wider range of conceiv-
able model structures may help to anticipate surprises
that would have been overlooked otherwise.

4.2.3. Different degrees of extrapolation

Our proposed framework deals with situations where
predictions involve extrapolations beyond available field
data. However, there are different degrees of extrapola-
tion (Fig. 2). If we look at the situation where a three-
dimensional groundwater model is calibrated against
groundwater head and discharge data, model predic-
tions of groundwater recharge to a given layer is a smal-
ler extrapolation than model predictions of groundwater
age or contaminant concentration. In both situations,
model predictions are carried out for variables that have
not been used as calibration targets and for which no
traditional split-sample validation tests are possible.
The type of validation test recommended for such situa-
tion is a proxy-basin test, which according to the princi-
ples in Klemes [26] and Refsgaard [38], for instance,
could imply that validation tests have to be conducted
in two similar catchments where relevant data (e.g. con-

centrations) exist, and where such data are not used for
calibration. The residuals in the other catchments can
then be seen as a measure of the uncertainty to be
expected in the catchment of interest.

If model predictions are made for groundwater heads
in cases involving groundwater abstraction, and the
existing data available for calibration and validation
tests do not include such abstraction, we also have an
extrapolation case, although of a different nature. In this
case we have data for the variable of predictive interest,
but the catchment characteristics are non-stationary.
This corresponds to the situation of model validation
denoted by a differential split-sample test [26,38]. The
differential split-sample test scheme recommended by
Klemes also operates by tests on similar catchments
where data for the type of non-stationary situation exist.
Differential split-sample tests are often less demanding
than proxy-basin tests [36]. A similar type of differential
split-sample situation arises when predictions are
required for a system in which structural change is
expected (e.g. [50,4].

In cases where the conceptual models can be trans-
ferred to other catchments in a reliable and reproducible
way, such proxy-basin and differential split-sample tests
could be conducted and the results used to evaluate the
goodness of the underlying conceptual models. It is
worth noting that Klemes’ test schemes, which also
apply for cases of extrapolation, operate with tests for
two alternative catchments. This has clear similarities
with our strategy of recommending the use of multiple
conceptual models.

4.3. Perspectives

In many cases where environmental models are used
to make predictions that are extrapolations beyond the
calibration base, no suitable framework exists for assess-
ing the effects of model structure error. The proposed
framework is composed of elements originating from
different scientific disciplines. The elements are well
tested individually, but not previously applied in such
an integrated manner for water resources or environ-
mental modelling applications. The full framework still
needs to be tested in real-life cases.
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Appendix. Terminology

The terminology used is mainly based on Refsgaard
and Henriksen [39]:

Reality: The system that we aim to represent with the
model, understood here as the study area.

Conceptual model: A representation of ‘reality’ in
terms of verbal descriptions, equations, governing rela-
tionships or ‘natural laws’ that purport to describe real-
ity. This is the user’s perception of the key hydrological
and ecological processes in the study area (perceptual
model) and the corresponding simplifications and
numerical accuracy limits that are assumed acceptable
in order to achieve the purpose of the modelling. A con-
ceptual model therefore includes a mathematical
description (equations) of assumed processes and a
description of the objects they interact with, including
river system elements, ecological structures, geological
features, etc. that are required for the particular purpose
of modelling.

Model code: A generic mathematical description of a
conceptual model, implemented in a computer program.
It is generic in the sense that, without program changes,
it can be used to establish a model with the same basic
type of equations (but allowing different input variables
and parameter values) for a different study area.

Model: A case-specific tailored version of a model
code established for a particular study area and set of
modelling objectives (output variables) including specific
input data and parameter values.

Model confirmation: Determination of the adequacy
of the conceptual model to provide an acceptable per-
formance for the domain of intended application.

Code verification: Substantiation that a model code
adequately represents a conceptual model within certain
specified limits or ranges of application and correspond-
ing ranges of accuracy.

Model calibration: The procedure of adjusting the
parameter values of a model in such a way that the
model reproduces an observed response of the system
represented in the model within the range of accuracy
specified in the performance criteria.

Model validation: Substantiation that a model, within
its domain of applicability, possesses a satisfactory
range of accuracy, consistent with the intended applica-
tion of the model. Note that various authors have criti-
cised the use of the word validation for predictive
models because universal validation of a model is in
principle impossible and therefore prefer to use the term
model evaluation [32,3]. In our definition [39] the term
validation is not used in a universal sense, but is always
restricted to clearly defined domains of applicability and

performance accuracy (‘numerical universal’ in Poppe-
rian sense).

Pedigree: Pedigree conveys an evaluative account of
the production process of information, and indicates dif-
ferent aspects of the underpinning and scientific status
of the knowledge used. Pedigree is expressed by means
of a set of pedigree criteria to assess these different
aspects. Criteria for model parameter pedigree are for
instance proxy representation, empirical basis, method-
ological rigor, theoretical understanding and validation.
Assessment of pedigree involves qualitative expert
judgement. To minimise arbitrariness and subjectivity
in measuring strength, a pedigree matrix is used to code
qualitative expert judgements for each criterion into a
discrete numeral scale from 0 (weak) to 4 (strong) with
linguistic descriptions (modes) of each level on the scale
[49].
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