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1.  Supplementary Methods 21 

Summary 22 

We assessed the role of coastal habitats in reducing the relative vulnerability of 23 

people and property to erosion and flooding from storms and five sea-level rise (SLR) 24 

scenarios in 1 km2 segments along the entire coast of the United States.  We quantified 25 

exposure to coastal hazards on a nationwide scale, and based our SLR scenarios on those 26 

used in the 2013 National Climate Assessment24.  We calculated a coastal hazard index 27 

that incorporates seven physical and biological variables: shoreline type (which includes 28 

geomorphology and physical structures), habitats, relief, SLR, wind exposure, wave 29 

exposure, and surge potential (Supplementary Table 1)21.  Five years (2006-2010) of the 30 

US Census Bureau’s American Community Survey (ACS)22 data and Zillow’s Home 31 

Value Index (ZHVI), which is the median market value of residential properties in each 32 

U.S. 2010 Census block group23, allowed us to identify where habitats provide protection 33 

for the most vulnerable people and highest value properties. 34 

 Our analysis followed a four step process, summarized here and illustrated in 35 

Supplementary Fig. 1.  First, we designed the SLR, storm and habitat scenarios.  To 36 

assess the effect of SLR we developed four scenarios for 2100 and one current scenario 37 

(Supplementary Fig. 2) using the 2013 National Climate Assessment guidance24: trend, 38 

B1 and A2 (based on emission scenarios), high (incorporates maximum glacier and ice 39 

sheet contributions), and current (observed rise from 1992 to 2006).  Because of 40 

uncertainty among models and studies about the relationship between waves and climate 41 

change29, we made the simplifying assumption that storm intensity and frequency in 2100 42 

will be the same as the current scenario.  We estimated current wave and wind exposure 43 
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1.  Supplementary Methods 21 

Summary 22 

We assessed the role of coastal habitats in reducing the relative vulnerability of 23 

people and property to erosion and flooding from storms and five sea-level rise (SLR) 24 

scenarios in 1 km2 segments along the entire coast of the United States.  We quantified 25 

exposure to coastal hazards on a nationwide scale, and based our SLR scenarios on those 26 

used in the 2013 National Climate Assessment24.  We calculated a coastal hazard index 27 

that incorporates seven physical and biological variables: shoreline type (which includes 28 

geomorphology and physical structures), habitats, relief, SLR, wind exposure, wave 29 

exposure, and surge potential (Supplementary Table 1)21.  Five years (2006-2010) of the 30 

US Census Bureau’s American Community Survey (ACS)22 data and Zillow’s Home 31 

Value Index (ZHVI), which is the median market value of residential properties in each 32 

U.S. 2010 Census block group23, allowed us to identify where habitats provide protection 33 

for the most vulnerable people and highest value properties. 34 

 Our analysis followed a four step process, summarized here and illustrated in 35 

Supplementary Fig. 1.  First, we designed the SLR, storm and habitat scenarios.  To 36 

assess the effect of SLR we developed four scenarios for 2100 and one current scenario 37 

(Supplementary Fig. 2) using the 2013 National Climate Assessment guidance24: trend, 38 

B1 and A2 (based on emission scenarios), high (incorporates maximum glacier and ice 39 

sheet contributions), and current (observed rise from 1992 to 2006).  Because of 40 

uncertainty among models and studies about the relationship between waves and climate 41 

change29, we made the simplifying assumption that storm intensity and frequency in 2100 42 

will be the same as the current scenario.  We estimated current wave and wind exposure 43 

based on six years of NOAA WAVEWATCH III model hindcast reanalysis results for 44 

2005-2010 (see Wind and Wave Data descriptions below for more information)28.  To 45 

determine where habitats play an important role in providing protection from erosion and 46 

flooding with SLR, we contrasted a scenario including nine habitats in the index (coastal 47 

forests, coral reefs, emergent marsh, oyster reefs, low and high dunes, seagrass beds, kelp 48 

forests, additional intertidal aquatic vegetation, Supplementary Fig. 4) with the exclusion 49 

of all habitats for a total of ten climate by habitat scenarios.   50 

Second, we collected data for each of the seven variables in the coastal hazard 51 

index and ran the model for the ten habitat/climate scenarios.  For the six physical 52 

variables we used nationwide datasets.  For the habitat data we used nationwide datasets 53 

if they were available for certain habitat types (e.g., coral) and supplemented with 54 

regionally collected data for habitats lacking a single dataset for the whole country (e.g., 55 

seagrass beds).  The methods sections of Arkema et al. contains further details on the 56 

index, which is a part of the InVEST software and is freely available for downloading 57 

and application to other locations at www.naturalcapitalproject.org.  Note that each 58 

variable in our analysis was weighted equally, after several previously developed coastal 59 

vulnerability indices16,17 (see Table 4 in ref [31] for review of indices).  However, our 60 

approach is flexible for future studies; variables can be weighted more or less heavily 61 

than others and/or excluded from the analysis entirely if appropriate (see section below 62 

on wind and wave data). 63 

The resulting index measures the relative exposure to coastal hazard of each 1 64 

km2 segment compared to all other segments nation-wide and across the ten 65 

habitat/climate scenarios (Supplementary Fig. 3).  To map hazard we classified the 66 
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distribution of index values for all segments and scenarios (ranging from 1-5) into 67 

quartiles to indicate areas of highest hazard (>3.36 = top 25% of the distribution), 68 

intermediate hazard (2.36-3.36 = central 50% of the distribution) and lowest hazard 69 

(<2.36= bottom 25% of the distribution, Supplementary Fig. 3).     70 

Third, we drew on two sources of socio-economic data, the US Census Bureau’s 71 

ACS 5-year summary reported at the census block group scale22 and ZHVI23, which we 72 

used to determine where habitats provide protection for the most vulnerable people and 73 

highest value properties.  From the ACS data we extracted four metrics per census block 74 

group: total population, number of people older than 65, number of families with total 75 

income below the poverty line, and total number of residential properties.  From Zillow 76 

we received the median home value for all census block groups with greater than 30 77 

properties on 08 May 2012.  We distributed the data for people and properties throughout 78 

the census block group at a resolution of 30 m with a dasymetric mapping approach30 that 79 

uses land-use, land-cover and land stewardship data (indicating uninhabited public lands) 80 

to identify where people are most likely to live.  81 

Fourth, we estimated the total human population, number of people older than 65 82 

years, number of families under the poverty line, number of properties, and median value 83 

of properties in each 1 km2 segment exposed to the highest coastal hazard (index value 84 

>3.36) for the ten habitat/climate scenarios for the entire U.S. coastline.  To ground our 85 

results, which are based in part on a relative coastal hazard index, we compared our 86 

estimates for number of people exposed to the greatest coastal hazard to observed data on 87 

hazard events and losses for the coastal U.S.25.   88 

4 NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE1944

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nclimate1944


distribution of index values for all segments and scenarios (ranging from 1-5) into 67 

quartiles to indicate areas of highest hazard (>3.36 = top 25% of the distribution), 68 

intermediate hazard (2.36-3.36 = central 50% of the distribution) and lowest hazard 69 
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ACS 5-year summary reported at the census block group scale22 and ZHVI23, which we 72 

used to determine where habitats provide protection for the most vulnerable people and 73 

highest value properties.  From the ACS data we extracted four metrics per census block 74 

group: total population, number of people older than 65, number of families with total 75 

income below the poverty line, and total number of residential properties.  From Zillow 76 

we received the median home value for all census block groups with greater than 30 77 

properties on 08 May 2012.  We distributed the data for people and properties throughout 78 

the census block group at a resolution of 30 m with a dasymetric mapping approach30 that 79 

uses land-use, land-cover and land stewardship data (indicating uninhabited public lands) 80 

to identify where people are most likely to live.  81 

Fourth, we estimated the total human population, number of people older than 65 82 

years, number of families under the poverty line, number of properties, and median value 83 

of properties in each 1 km2 segment exposed to the highest coastal hazard (index value 84 

>3.36) for the ten habitat/climate scenarios for the entire U.S. coastline.  To ground our 85 

results, which are based in part on a relative coastal hazard index, we compared our 86 

estimates for number of people exposed to the greatest coastal hazard to observed data on 87 

hazard events and losses for the coastal U.S.25.   88 

All open-access data and code for the coastal hazard index is available at 89 

[address]. 90 

Definitions  91 

The terms hazard, risk, exposure and vulnerability (both social and physical) are often 92 

used differently by scientists from different fields.  For clarity, we define these terms:.  93 

Coastal hazard refers to flooding and erosion caused by storms and sea level rise acting 94 

upon shorelines.  Even though erosion and flooding are natural processes they may incur 95 

negative consequences for people and property so we refer to them as hazards.  Results 96 

from the hazard index encompass both the relative magnitude of erosion and/or flooding, 97 

and the probability that these hazards may occur based on the distribution of the index 98 

across scenarios. 99 

Risk refers to the potential societal consequences of erosion and flooding (e.g., mortality 100 

or economic damages). 101 

Vulnerability refers to both social and physical vulnerability.  For example, socially 102 

vulnerable populations, such as poor families or elderly, may be more likely to suffer 103 

adverse effects from hazards.  Physically vulnerable populations and property are highly 104 

exposed to coastal hazards.  In this paper, we use “coastal vulnerability” to represent the 105 

numbers of people, their demographics and the total value of property with the highest 106 

exposure to coastal hazards. 107 

Exposure refers to the location of people and property where hazards may occur.   108 

 109 

Data and models for all variables in the hazard index and vulnerability mapping 110 

Habitat Data 111 
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We identified nine types of habitats that occur along the coast of the U.S. that 112 

may provide varying levels of coastal protection: coral reefs, coastal forests (e.g., 113 

mangroves and other coastal trees and shrubs), emergent marsh, seagrass beds, kelp 114 

forests, additional intertidal aquatic vegetation, oyster reefs, and high and low dunes.  115 

The hazard index ranks the habitats based on differences in their morphology and 116 

observed ability to provide protection from erosion and flooding by dissipating wave 117 

energy, attenuating storm surge, or anchoring sediments, for example (Supplementary 118 

Table S1).  The index also accounts for greater protection provided by co-occurring 119 

multiple habitats and assigns a distance over which different categories of habitats will 120 

provide protection for coastlines21 (see below).   121 

For the “with habitat” scenario, we used a two-part approach to amass data 122 

nationwide.  Where possible we used national scale habitat datasets.  If unavailable, we 123 

pieced together habitat data on a state-by-state basis.  Given the scarcity and inaccuracy 124 

of national scale datasets for some important habitats (e.g., oyster reefs, seagrass beds, 125 

kelp forests, and dunes), we felt it was important to pursue the piecemeal approach.  For 126 

the “without habitat” scenario we assigned a rank of 5 for the habitat variable 127 

(Supplementary Table 1) to all coastal segments when running the model. 128 

We used ArcGIS to measure a habitat-specific distance (Supplementary Table 2) 129 

from all borders of each habitat patch, based on expert judgment, natural history, and the 130 

peer-reviewed literature.  These distances are essentially a technical shortcut, rather than 131 

an ecological or hydrodynamic parameter.  They allow us to designate which coastline 132 

segments are protected by patches of habitats located at different distances from the grid 133 

cells, given that the model does not take into account the numerous factors (depth, 134 
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The hazard index ranks the habitats based on differences in their morphology and 116 

observed ability to provide protection from erosion and flooding by dissipating wave 117 

energy, attenuating storm surge, or anchoring sediments, for example (Supplementary 118 

Table S1).  The index also accounts for greater protection provided by co-occurring 119 

multiple habitats and assigns a distance over which different categories of habitats will 120 

provide protection for coastlines21 (see below).   121 

For the “with habitat” scenario, we used a two-part approach to amass data 122 

nationwide.  Where possible we used national scale habitat datasets.  If unavailable, we 123 

pieced together habitat data on a state-by-state basis.  Given the scarcity and inaccuracy 124 

of national scale datasets for some important habitats (e.g., oyster reefs, seagrass beds, 125 

kelp forests, and dunes), we felt it was important to pursue the piecemeal approach.  For 126 

the “without habitat” scenario we assigned a rank of 5 for the habitat variable 127 

(Supplementary Table 1) to all coastal segments when running the model. 128 

We used ArcGIS to measure a habitat-specific distance (Supplementary Table 2) 129 

from all borders of each habitat patch, based on expert judgment, natural history, and the 130 

peer-reviewed literature.  These distances are essentially a technical shortcut, rather than 131 

an ecological or hydrodynamic parameter.  They allow us to designate which coastline 132 

segments are protected by patches of habitats located at different distances from the grid 133 

cells, given that the model does not take into account the numerous factors (depth, 134 

channel configuration etc.) that could influence the distance over which effects of these 135 

habitats could be felt.  For example, oysters generally exist close to shore, so their 136 

protective distance is small.  In contrast, coral reefs sometimes exist much farther from 137 

shore and evidence from the literature suggests that they can attenuate waves and surge 138 

over large distances to protect more distant shorelines32.  Thus, for corals, the protective 139 

distance is larger.  If the “protective distance” buffer from a patch of habitat overlapped a 140 

coastline segment then we considered it protected by that particular habitat.   141 

 Lastly, we included in the index the protection provided to coastal segments by 142 

more than one habitat type.  For example, some shorelines may have just coral reefs, 143 

while other areas are fringed by mangroves and seagrass, as well as corals.  To account 144 

for multiple habitats we ranked the habitat(s) protecting a particular segment of coastline 145 

using the integers in Supplementary Table 1.  Next we combined these one or more 146 

values into an overall habitat rank (decimal) using the equation below 147 

 148 

where k  keeps track of the multiple habitats.  The outcome of this equation is that 149 

multiple high-ranking habitats (e.g., seagrass and kelp) perform better with a combined 150 

rank of 3.899 than either one alone (i.e., final rank of kelp = 4.050 and final rank of 151 

seagrass = 4.050).  But kelp and seagrass together do not perform as well as a coral reef 152 

alone (final rank coral = 1.80).  Our ranking approach is a first attempt to incorporate the 153 

role of multiple habitats in reducing coastal vulnerability over such a large geographic 154 

scale and is flexible enough to be refined as future research in this field emerges.  Please 155 
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see ref [21] for a full listing of the final ranks of all habitats individually and in 156 

combination. 157 

 158 

Coastal forests, emergent marsh, additional intertidal aquatic vegetation  159 

We used the National Wetland Inventory Wetlands Data33 to create habitat layers 160 

for three habitat categories: coastal forests, emergent marsh, and additional intertidal 161 

aquatic vegetation.  This dataset delineates the areal extent, approximate location and 162 

type of wetlands and deepwater habitats in the conterminous U.S.33,34.  Compiled since 163 

1977 by the U.S. Fish and Wildlife Service, the NWI data cover the lower 48, Hawaii and 164 

Alaska.  The maps were prepared from analysis of high altitude imagery.  Wetlands were 165 

identified based on vegetation, visible hydrology, and geography and classified using 166 

alpha-numeric codes for the wetland and deepwater classifications34. 167 

We used the alpha-numeric map codes to extract the polygons from the NWI that 168 

were classified as estuarine intertidal forests and scrub shrub (coastal forests -- including 169 

mangroves and other coastal tree and shrub taxa), emergent wetland (emergent marsh), 170 

marine and estuarine aquatic vegetation (additional intertidal aquatic vegetation).  We 171 

created shapefiles for each habitat.  To reduce model run-time we resampled these data to 172 

a resolution of 50 m.  For the coastal hazard analysis we classified coastal forests, 173 

emergent marsh and aquatic vegetation as rank “1”, “2” and “4” and assigned protective 174 

distances of 2000, 1000 and 500 m, respectively (Supplementary Table 2). 175 

 The NWI data exclude certain habitats because of the limitations of aerial 176 

imagery. These habitats include seagrass beds, kelp forests and coral.  We gathered 177 
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We used the National Wetland Inventory Wetlands Data33 to create habitat layers 160 

for three habitat categories: coastal forests, emergent marsh, and additional intertidal 161 

aquatic vegetation.  This dataset delineates the areal extent, approximate location and 162 

type of wetlands and deepwater habitats in the conterminous U.S.33,34.  Compiled since 163 

1977 by the U.S. Fish and Wildlife Service, the NWI data cover the lower 48, Hawaii and 164 

Alaska.  The maps were prepared from analysis of high altitude imagery.  Wetlands were 165 

identified based on vegetation, visible hydrology, and geography and classified using 166 

alpha-numeric codes for the wetland and deepwater classifications34. 167 

We used the alpha-numeric map codes to extract the polygons from the NWI that 168 

were classified as estuarine intertidal forests and scrub shrub (coastal forests -- including 169 

mangroves and other coastal tree and shrub taxa), emergent wetland (emergent marsh), 170 

marine and estuarine aquatic vegetation (additional intertidal aquatic vegetation).  We 171 

created shapefiles for each habitat.  To reduce model run-time we resampled these data to 172 

a resolution of 50 m.  For the coastal hazard analysis we classified coastal forests, 173 

emergent marsh and aquatic vegetation as rank “1”, “2” and “4” and assigned protective 174 

distances of 2000, 1000 and 500 m, respectively (Supplementary Table 2). 175 

 The NWI data exclude certain habitats because of the limitations of aerial 176 

imagery. These habitats include seagrass beds, kelp forests and coral.  We gathered 177 

seagrass bed and kelp forest data state-by-state and used a separate global dataset for 178 

coral. 179 

Coral reefs 180 

 The Reefs at Risk Base Dataset35 was developed by World Resources Institute 181 

and its partners, United Nations Environmental Program –World Conservation 182 

Monitoring Centre (UNEP-WCMC) and the WorldFish Center, to assess the status of and 183 

threats to the world’s coral reefs.  The original sources for the data include the 1) Institute 184 

for Marine Remote Sensing, University of South Florida and Institut de Recherche pour 185 

le Développement's “Millennium Coral Reef Mapping Project,” 2009 (30 m Landsat data 186 

classified and converted to shapefile), 2) UNEP-WCMC “Coral Reef Map,” 2002 and 3) 187 

additional data that were acquired or digitized from a variety of sources.  Scales typically 188 

range from 1:60,000 to 1:1,000,000.  To standardize these data for the purposes of the 189 

Reefs at Risk Revisited project, data were converted to raster format (ESRI GRID) at 190 

500-m resolution.  We created shapefiles for coral reefs for Hawaii and the Gulf Coast 191 

(including Florida) and projected the layers in meters.  We ranked coral reefs as “1” and 192 

assigned them a protective distance of 2000 m (Supplementary Table 2).   193 

Seagrass beds 194 

 Data for seagrass beds were compiled on a state-by-state basis from a variety of 195 

sources (Supplementary Table 3).  We are confident that our analysis includes all existing 196 

datasets at a state or regional scale, but we did not attempt to amass all datasets on a local 197 

scale (i.e., less than a few kilometers).  Although our maps may be missing some seagrass 198 

coverage, due to lack of data, timing of most recent survey, or another source of error, we 199 

feel our state-by-state approach is preferable to excluding seagrass beds altogether, given 200 
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that much spatial data are available at a state or regional level.  To address the issue that 201 

the disparate datasets were collected during different years and over different time 202 

periods, we created composite layers for each state and then merged the layers for four of 203 

our five regions: Alaska, West Coast, East Coast, Gulf Coast.  We included seagrass beds 204 

for each state except Hawaii, South Carolina, Georgia and Delaware.  After much 205 

searching and discussions with local experts, we decided not to include seagrass data for 206 

Hawaii, as the coverage of Halophilia hawiiana is quite sparse.  Seagrass beds do not 207 

exist in South Carolina or Georgia, and we were unable to find spatial data for seagrass 208 

beds in Delaware.  Seagrass data were rasterized at a 50 m resolution.  We assigned 209 

seagrass beds a rank “4” and protective distance of 500 m (Supplementary Table 2).  210 

Kelp forests 211 

 Like seagrass beds, no national scale dataset exists for kelp forests.  To address 212 

this problem we amassed data for canopy-forming kelps (e.g., Macrocystis pyrifera and 213 

Nereocystis leutkeana) that line the West Coast of the U.S. and Alaska using 214 

comprehensive datasets that exist for California, Oregon, Washington and Alaska 215 

(Supplementary Table 4).  We focused on kelp forests and so did not include data for 216 

understory kelps in the northeast.  Unfortunately, we lacked digitalized spatial data for 217 

large areas of Alaska (Supplementary Fig. 4) where we know from the ecological 218 

literature that canopy kelps exist36.  Because we lack kelp data, we may underestimate the 219 

difference in coastal hazard between with and without habitat scenarios.  For data rich 220 

areas on the West Coast like California, we incorporated a range of surveys to generate a 221 

single kelp forest composite spanning multiple years which was rasterizing at 50 m 222 
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that much spatial data are available at a state or regional level.  To address the issue that 201 

the disparate datasets were collected during different years and over different time 202 

periods, we created composite layers for each state and then merged the layers for four of 203 

our five regions: Alaska, West Coast, East Coast, Gulf Coast.  We included seagrass beds 204 

for each state except Hawaii, South Carolina, Georgia and Delaware.  After much 205 

searching and discussions with local experts, we decided not to include seagrass data for 206 

Hawaii, as the coverage of Halophilia hawiiana is quite sparse.  Seagrass beds do not 207 

exist in South Carolina or Georgia, and we were unable to find spatial data for seagrass 208 

beds in Delaware.  Seagrass data were rasterized at a 50 m resolution.  We assigned 209 

seagrass beds a rank “4” and protective distance of 500 m (Supplementary Table 2).  210 

Kelp forests 211 

 Like seagrass beds, no national scale dataset exists for kelp forests.  To address 212 

this problem we amassed data for canopy-forming kelps (e.g., Macrocystis pyrifera and 213 

Nereocystis leutkeana) that line the West Coast of the U.S. and Alaska using 214 

comprehensive datasets that exist for California, Oregon, Washington and Alaska 215 

(Supplementary Table 4).  We focused on kelp forests and so did not include data for 216 

understory kelps in the northeast.  Unfortunately, we lacked digitalized spatial data for 217 

large areas of Alaska (Supplementary Fig. 4) where we know from the ecological 218 

literature that canopy kelps exist36.  Because we lack kelp data, we may underestimate the 219 

difference in coastal hazard between with and without habitat scenarios.  For data rich 220 

areas on the West Coast like California, we incorporated a range of surveys to generate a 221 

single kelp forest composite spanning multiple years which was rasterizing at 50 m 222 

resolution.   We assigned kelp forests a rank “4” and protective distance of 1500 m 223 

(Supplementary Table 2). 224 

Oyster reefs 225 

 We compiled data for oyster reefs on a state-by-state basis for the Gulf Coast and 226 

the East Coast south of Delaware (Supplementary Table 5).  Along the East Coast we 227 

chose to include oyster reefs south of Delaware, as oyster populations in the northeast 228 

U.S. have been decimated over the last century to a point of functional extinction37.  Thus 229 

our dataset does not include reefs in the northeast where restoration has recently begun 230 

(e.g., sites funded by NOAA through the American Recovery and Reinvestment Act of 231 

200938) and which will hopefully provide protection in the near future.  We chose to 232 

exclude West Coast oyster populations as these occur in much smaller clumps and do not 233 

form reef-like structures.  We merged the layers for the East Coast and Gulf Coast by 234 

projecting all layers in meters and dissolving the borders between polygons.  For certain 235 

high resolution datasets (e.g., those for SC and GA), we filtered out all patches less than 236 

50 m resolution.  Oyster reefs were assigned rank “4” and a protective distance of 100 m 237 

(Supplementary Table 2). 238 

Dunes 239 

Coastal dunes data were obtained from three different sources, covering the 240 

Pacific Northwest, California from Santa Barbara north, the Gulf of Mexico and half of 241 

the eastern seaboard.  Data for the Pacific Northwest (Oregon and Washington39) and 242 

California40 were obtained from LiDAR records collected between 1998 and 2000.  Dune 243 

data for the Gulf of Mexico and part of the eastern seaboard (from Texas through North 244 

Carolina) were obtained from the US Geological Survey (USGS) Coastal Classification 245 
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Mapping Project16,41.  Dunes were classified as “high dune” if their crest was higher than 246 

5 m.  High dunes are less likely to lead to overwash and inundation when impacted by 247 

typical surge elevations that would occur during a large hurricane42,43.  High dunes were 248 

assigned rank “2” and low dunes rank “3.”  Both were assigned a protective distance of 249 

100 m (Supplementary Table 2). 250 

Physical data 251 

Coastal region  252 

 The coastal hazard index requires an outline of the region of interest.  We used the 253 

Global Self-consistent, Hierarchical, High-resolution Shoreline (GSHHS) provided by 254 

NOAA44. 255 

Shoreline Type 256 

Shoreline classification information for the continental U.S. is available from 257 

NOAA’s Office of Response and Restoration Environmental Sensitivity Index (ESI) 258 

Maps45 at state and/or regional levels.  We extracted polylines from the state and regional 259 

ESI geodatabases, except for Maine, where classification data were only available as 260 

polygons; we converted those to polylines.  State and regional polylines were merged into 261 

a national dataset .  We classified shoreline type for each state or region based on the 262 

associated ESI data for geomorphology or physical structures.  Each shoreline segment 263 

was then assigned a relative ranking from 1 to 5 based on its classification 264 

(Supplementary Table 116,21).       265 

The ESI dataset gives information about the type of physical structures present 266 

along the shore.  However, for some states it lumps geomorphic features (e.g., vertical 267 

rocky shore) and physical structure type (e.g., seawall) present at a shoreline into one 268 
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Mapping Project16,41.  Dunes were classified as “high dune” if their crest was higher than 246 

5 m.  High dunes are less likely to lead to overwash and inundation when impacted by 247 

typical surge elevations that would occur during a large hurricane42,43.  High dunes were 248 

assigned rank “2” and low dunes rank “3.”  Both were assigned a protective distance of 249 

100 m (Supplementary Table 2). 250 

Physical data 251 

Coastal region  252 

 The coastal hazard index requires an outline of the region of interest.  We used the 253 

Global Self-consistent, Hierarchical, High-resolution Shoreline (GSHHS) provided by 254 

NOAA44. 255 

Shoreline Type 256 

Shoreline classification information for the continental U.S. is available from 257 

NOAA’s Office of Response and Restoration Environmental Sensitivity Index (ESI) 258 

Maps45 at state and/or regional levels.  We extracted polylines from the state and regional 259 

ESI geodatabases, except for Maine, where classification data were only available as 260 

polygons; we converted those to polylines.  State and regional polylines were merged into 261 

a national dataset .  We classified shoreline type for each state or region based on the 262 

associated ESI data for geomorphology or physical structures.  Each shoreline segment 263 

was then assigned a relative ranking from 1 to 5 based on its classification 264 

(Supplementary Table 116,21).       265 

The ESI dataset gives information about the type of physical structures present 266 

along the shore.  However, for some states it lumps geomorphic features (e.g., vertical 267 

rocky shore) and physical structure type (e.g., seawall) present at a shoreline into one 268 

category  (e.g., Category “1” in Florida) and doesn’t indicate the type of feature 269 

(geomorphology or physical structure).  This makes any differentiation between hardened 270 

and natural shorelines impossible at a nationwide scale. Further, for the states that do 271 

differentiate between hardened and natural shorelines, the ESI dataset does not include 272 

information about the geomorphic classification of the coastal region protected by the 273 

structure.  Thus, for simplification, we assumed that where physical structures were 274 

present, they replaced the natural geomorphology.  As a result our analysis combines 275 

physical structures and geomorphology into a single variable.  Segments backed by 276 

seawalls were assigned a rank of 1 because they protect shores against erosion and 277 

inundation.  Note that this is the same ranking as that for rocky shores and high cliffs.  278 

Segments with a revetment or riprap wall were assigned a rank of 3 because they protect 279 

the shore against erosion, but have the potential to fail during storms, and do not reduce 280 

inundation level.  We also assigned a rank of 3 to segments with undefined types of 281 

shoreline hardening.  Because ESI datasets are not updated regularly (some maps were 282 

created more than 15 years ago), our shoreline classification layer may underestimate the 283 

amount of armored shoreline in the U.S.   284 

Our approach of combining physical structures and geomorphology may 285 

underestimate hazard where physical structures are present because we do not account for 286 

geomorphology (which is often sand or cobble beach and mudflat where physical 287 

structures are built).  Moreover, because we combine physical structures and 288 

geomorphology, our analysis is not appropriate for comparing the coastal defense 289 

provided by physical structures versus habitats nor for comparing differences in hazard 290 

with combinations of habitats and physical structures that are similarly ranked to natural 291 
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geomorphologies.  Note however, that our open access tool and approach is flexible and 292 

with more detailed, local data and information, a user could create a separate variable and 293 

ranking system for physical structures and use the index to begin to get at these 294 

comparisons.  We do caution, however, that a full cost-benefit analysis will require 295 

quantitative ecological, storm surge and wave models coupled with valuation of a full 296 

suite of ecosystem services.   297 

Relief   298 

To generate a relief rank for each coastline segment, we utilized the World 299 

Wildlife Fund’s Hydrosheds digital elevation model (DEM) available globally at 90 m 300 

resolution46.  The coastal hazard index tool summarizes neighborhood relief on a cell-by-301 

cell basis using a focal radius of 3000 m x 3000 m for each coastline segment.  The tool 302 

determines the average elevation (height in meters) of all DEM cells on land within this 303 

3000 m search window.  The resulting distribution is classified using percentile breaks 304 

(20, 40, 60, and 80) to produce relative ranks of 5 through 1 respectively.  The rationale 305 

for this 3000 m search radius is to best approximate variance in coastal relief at local and 306 

regional scales and still allow for coarse DEMs as inputs.  Through sensitivity testing, we 307 

determined no significant change in the U.S. relief rankings when providing a finer DEM 308 

than the 90 m input used for this analysis. 309 

Wind exposure  310 

Strong winds can generate high storm surges and/or high waves if they blow over 311 

an area for a long period of time.  These high surges and waves increase the relative 312 

exposure of a particular segment of coastline to flooding and erosion.  We computed 313 

relative wind exposure for each coastline segment using time series data of wind speeds 314 
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geomorphologies.  Note however, that our open access tool and approach is flexible and 292 

with more detailed, local data and information, a user could create a separate variable and 293 

ranking system for physical structures and use the index to begin to get at these 294 

comparisons.  We do caution, however, that a full cost-benefit analysis will require 295 

quantitative ecological, storm surge and wave models coupled with valuation of a full 296 

suite of ecosystem services.   297 

Relief   298 

To generate a relief rank for each coastline segment, we utilized the World 299 

Wildlife Fund’s Hydrosheds digital elevation model (DEM) available globally at 90 m 300 

resolution46.  The coastal hazard index tool summarizes neighborhood relief on a cell-by-301 

cell basis using a focal radius of 3000 m x 3000 m for each coastline segment.  The tool 302 

determines the average elevation (height in meters) of all DEM cells on land within this 303 

3000 m search window.  The resulting distribution is classified using percentile breaks 304 

(20, 40, 60, and 80) to produce relative ranks of 5 through 1 respectively.  The rationale 305 

for this 3000 m search radius is to best approximate variance in coastal relief at local and 306 

regional scales and still allow for coarse DEMs as inputs.  Through sensitivity testing, we 307 

determined no significant change in the U.S. relief rankings when providing a finer DEM 308 

than the 90 m input used for this analysis. 309 

Wind exposure  310 

Strong winds can generate high storm surges and/or high waves if they blow over 311 

an area for a long period of time.  These high surges and waves increase the relative 312 

exposure of a particular segment of coastline to flooding and erosion.  We computed 313 

relative wind exposure for each coastline segment using time series data of wind speeds 314 

and associated direction, above the 90th percentile value, and fetch distance.  Wind speed 315 

and direction were estimated from wind data compiled from six years (2005-2010) of 316 

NOAA WAVEWATCH III (WWIII) model hindcast reanalysis results28.  Fetch distance 317 

was estimated with an accuracy of 1 km47. 318 

Wave exposure  319 

The relative exposure of a segment of coastline to storm waves is a qualitative 320 

indicator of the potential for shoreline erosion.  A given stretch of shoreline is generally 321 

exposed to long period swells generated by distant storms or locally-generated wind-322 

waves.  For a given wave height, waves that have a longer period have more power than 323 

shorter waves48,49.  We computed relative wave exposure for each coastline segment.  324 

The hazard index tool ranks wave exposure for each 1 km2 coastline segment based on its 325 

orientation with respect to the average of the time series of wave power above the 90th 326 

percentile value in each of 16 cardinal directions.  This wave power value is the 327 

maximum between wave power values computed using observed wave information from 328 

WWIII outputs28, and wave power computed from wind speed values obtained from the 329 

same source cited above and fetch distances.  We found that, in sheltered areas where 330 

oceanic waves have little influence and most waves are locally generated, wave power 331 

values directly from WWIII were equal to the wave power values obtained from fetch 332 

and wind data.  However, in areas exposed to the open ocean, wave power values 333 

obtained from WWIII were higher than those obtained from wind and fetch data because 334 

the former intrinsically contain the signature of waves generated by local storms, long 335 

distance storms (swells) and wind-generated waves.  336 
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Although wave exposure was, in part, calculated from wind data, wind and wave 337 

exposure outputs are not duplicative as winds have distinct effects on coastal areas.  338 

Higher winds speed values lead to a higher wave-induced water level50, which can in turn 339 

be modified by coastal habitats51.  In addition to waves, wind generates surge.  By 340 

including wind speed and direction, in addition to the variable for distance to continental 341 

shelf, we were able to represent surge potential more thoroughly in the index.  Wind is 342 

also important to include as an independent variable because it can damage structures 343 

directly.  The ‘roughness’ of wetlands and coastal forests may provide protection for 344 

coastal communities by reducing wind speed52,53.  Finally, for this particular nation-wide 345 

analysis, we found that including or excluding wind did not change the overall results. 346 

Outputs from the model with and without wind were highly correlated (r2 = 0.9) across 347 

regions and scenarios.  In spite of this justification to include both wind and wave data, 348 

there are indeed some locations where it may be more appropriate to include just wave 349 

data.  Our approach is flexible and the online open source tool used in this analysis 350 

allows the user to choose to exclude variables from the index.   351 

Surge potential 352 

Surge height at the coast can be related to the length of the continental shelf and 353 

storm characteristics54.  To estimate surge potential we calculated the distance between a 354 

segment of coastline and the edge of the continental shelf.  We used a contour polygon 355 

that depicts the edge of the continental margin, prepared by the Continental Margins 356 

Ecosystem (COMARGE) effort in conjunction with the Census of Marine Life.  The 357 

same global dataset is included with the hazard index tool download.  It represents an 358 

estimate of continental margins worldwide based on bathymetry and expert opinion.      359 
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Although wave exposure was, in part, calculated from wind data, wind and wave 337 

exposure outputs are not duplicative as winds have distinct effects on coastal areas.  338 

Higher winds speed values lead to a higher wave-induced water level50, which can in turn 339 

be modified by coastal habitats51.  In addition to waves, wind generates surge.  By 340 

including wind speed and direction, in addition to the variable for distance to continental 341 

shelf, we were able to represent surge potential more thoroughly in the index.  Wind is 342 

also important to include as an independent variable because it can damage structures 343 

directly.  The ‘roughness’ of wetlands and coastal forests may provide protection for 344 

coastal communities by reducing wind speed52,53.  Finally, for this particular nation-wide 345 

analysis, we found that including or excluding wind did not change the overall results. 346 

Outputs from the model with and without wind were highly correlated (r2 = 0.9) across 347 

regions and scenarios.  In spite of this justification to include both wind and wave data, 348 

there are indeed some locations where it may be more appropriate to include just wave 349 

data.  Our approach is flexible and the online open source tool used in this analysis 350 

allows the user to choose to exclude variables from the index.   351 

Surge potential 352 

Surge height at the coast can be related to the length of the continental shelf and 353 

storm characteristics54.  To estimate surge potential we calculated the distance between a 354 

segment of coastline and the edge of the continental shelf.  We used a contour polygon 355 

that depicts the edge of the continental margin, prepared by the Continental Margins 356 

Ecosystem (COMARGE) effort in conjunction with the Census of Marine Life.  The 357 

same global dataset is included with the hazard index tool download.  It represents an 358 

estimate of continental margins worldwide based on bathymetry and expert opinion.      359 

Socio-economic data 360 

Population metrics 361 

Historically, vulnerability to natural hazards (e.g., drought, floods etc.) was 362 

measured in terms of natural and physical environmental variables, akin to our coastal 363 

hazard index18.  Over the last few decades, the approach has evolved and been adapted to 364 

assess social vulnerability to climate hazards18.  Studies have shown conceptually and 365 

through applications that vulnerability to natural hazards depends on the social, political 366 

and economic characteristics of individuals and populations18,55.  This in turn constrains 367 

their responses and abilities to cope with disasters55.  For example, the burden of 368 

Hurricane Katrina depended on a community’s physical exposure to the hazard and 369 

socioeconomic factors such as disposable income for coping with the consequences of the 370 

hazard.  In this study, we were interested in identifying where coastal habitats provide 371 

protection from flooding and erosion caused by SLR and storms for the greatest number 372 

of people and those subsets of the population that are least capable of avoiding or 373 

preventing hazards.  We assessed the vulnerability of U.S. populations to storms and SLR 374 

using three population metrics: total population, number of families below the poverty 375 

line and number of people above age 65.  We chose these three metrics, rather than a 376 

social vulnerability index because 1) they are meaningful to people, 2) there is not yet 377 

general consensus on the variables that should be used to measure social vulnerability to 378 

climate change18 and 3) the data for these metrics are publically available from the 379 

American Community Survey (ACS) conducted by the U.S. Census Bureau. 380 

The ACS is a household survey that currently samples about 3.5 million addresses 381 

annually. Through the ACS, the U.S. Census Bureau collects data on demographic, 382 
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social, economic, and housing variables such as gender, ethnicity, age, citizenship, and 383 

birthplace.  Each year the survey produces data that include 1-year, 3-year, and 5-year 384 

estimates of these variables for geographic areas in the United States and Puerto Rico, 385 

ranging from neighborhoods to Congressional districts to the entire nation.  We used the 386 

most recent 5-year estimates for the period 2006-2010 summarized by census block-387 

group.  Block-groups are geographical units nested within larger units called tracts, which 388 

are nested within counties.  For each block-group we mapped total population, population 389 

over 65, and number of families whose total income is under the poverty line using the 390 

ACS data provided in table B00003, B01001, and B17001, respectively22.   391 

Dasymetric mapping of ACS data and density of properties 392 

To create a more precise map of where people live on the landscape, we 393 

employed a dasymetric mapping technique available as a tool for ArcGIS from the 394 

USGS30.  Dasymetric mapping makes use of areal interpolation to convert aggregated 395 

population units (e.g., census block-groups) into homogenous zones.  The mapping 396 

technique uses empirical sampling and areal weighting to represent population densities 397 

within a standard unit of area.  The USGS dasymetric mapping tool requires a land-use 398 

raster input layer that has been reclassified into groups representing inhabited and 399 

uninhabited areas based on density stratification.  This hierarchy serves to distribute more 400 

people into the higher density classes as well as determine cells where no people reside.  401 

We used the 2006 National Land Cover Database (NLCD)56 and reclassified 20 land-402 

use/land-cover (LULC) classes into four population density classes required by the tool: 403 

1) high-density residential, 2) low-density residential, 3) non-urban inhabited and 4) 404 

uninhabited.  Since the NLCD land-use categories for low, medium and high 405 

18 NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE1944

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nclimate1944


social, economic, and housing variables such as gender, ethnicity, age, citizenship, and 383 

birthplace.  Each year the survey produces data that include 1-year, 3-year, and 5-year 384 

estimates of these variables for geographic areas in the United States and Puerto Rico, 385 

ranging from neighborhoods to Congressional districts to the entire nation.  We used the 386 

most recent 5-year estimates for the period 2006-2010 summarized by census block-387 

group.  Block-groups are geographical units nested within larger units called tracts, which 388 

are nested within counties.  For each block-group we mapped total population, population 389 

over 65, and number of families whose total income is under the poverty line using the 390 

ACS data provided in table B00003, B01001, and B17001, respectively22.   391 

Dasymetric mapping of ACS data and density of properties 392 

To create a more precise map of where people live on the landscape, we 393 

employed a dasymetric mapping technique available as a tool for ArcGIS from the 394 

USGS30.  Dasymetric mapping makes use of areal interpolation to convert aggregated 395 

population units (e.g., census block-groups) into homogenous zones.  The mapping 396 

technique uses empirical sampling and areal weighting to represent population densities 397 

within a standard unit of area.  The USGS dasymetric mapping tool requires a land-use 398 

raster input layer that has been reclassified into groups representing inhabited and 399 

uninhabited areas based on density stratification.  This hierarchy serves to distribute more 400 

people into the higher density classes as well as determine cells where no people reside.  401 

We used the 2006 National Land Cover Database (NLCD)56 and reclassified 20 land-402 

use/land-cover (LULC) classes into four population density classes required by the tool: 403 

1) high-density residential, 2) low-density residential, 3) non-urban inhabited and 4) 404 

uninhabited.  Since the NLCD land-use categories for low, medium and high 405 

development do not always differentiate the built environment from where people are 406 

permitted to live, we also utilized land stewardship information from the USGS Gap 407 

Analysis Program57 which identifies uninhabited public lands.  By performing raster 408 

overlays we were able to mark all the development LULC cells found on public lands.  409 

As shown in Supplementary Table 6, LULC cells originally categorized as “developed” 410 

that occur on public lands were changed to a value of “4” indicating uninhabited, and no 411 

people were distributed in these cells.  Ultimately, the areal interpolation performed by 412 

this tool allows for the disaggregation of any demographic data in a geospatial format that 413 

has one population value represented as a unit (polygon).   Using LULC and land 414 

stewardship information we were able to produce more detailed information on 415 

population density and where people reside on the landscape, for each of the three 416 

population metrics.   417 

Property values 418 

The value of coastal properties was estimated using the ZHVI, which is the 419 

median market value of housing units in each U.S. 2010 Census block-group23.  The 420 

ZHVI is similar to two other popular housing-price metrics – the Federal Housing 421 

Finance Agency’s House Price Index (HPI) and Standard & Poor's Case-Shiller Index 422 

(CSI) – in that it is designed to track the changing value of residential real estate. While 423 

the HPI and CSI do so by observing changes in value between sales of the same home 424 

(repeat sales), the ZHVI uses a newer methodology known as hedonic imputation which 425 

tracks the movement in the estimated value of every unit in the housing stock, thereby 426 

adjusting for differences between the composition of sales versus the composition of the 427 

overall housing stock.  The ZHVI is the preferred estimate for this application for several 428 
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reasons.  First, because the ZHVI is based currently on over 100 million of the 429 

131,704,730 homes (76%) from across the country23, it can be computed for any location 430 

in the U.S., while the HPI and CSI are available only for select metropolitan areas.  This 431 

is advantageous for our analyses of property values within each 1 km2 coastline segment 432 

both in and outside of metropolitan centers.  Second, Zillow uses all residential properties 433 

to compute an area’s ZHVI, while the HPI includes only those properties with mortgages 434 

held by Fannie Mae and Freddie Mac.  Furthermore, unlike the HPI and CSI, the ZHVI 435 

incorporates physical attributes of the lot and structures (such as square footage), 436 

assessed value, and prices of comparable properties.  The ZHVI estimates the value of 437 

residential dwellings.  It does not include commercial properties.   438 

On May 08, 2012, Zillow provided ZHVI estimates for each U.S. Census 2010 439 

block-group in every coastal state in the U.S. for which they had more than 30 valued 440 

properties.  115,571 of 134,723 block-groups contained a ZHVI.  Missing ZHVI values 441 

were replaced with the ZHVI from the closest block-group with data that was in the same 442 

census tract (the U.S. Census arranges tracts to encompass areas of similar socio-443 

economic characteristics).  If no block-groups within a tract contained ZHVI data, we 444 

replaced all missing values of the block-group with the average ZHVI from block-groups 445 

in adjacent census tracts.  We calculated property values for each 30 m raster cell in the 446 

dasymetric map of housing units by multiplying the number of units by the median home 447 

value for the census block-group.  The number of residential housing units per U.S. 448 

Census 2010 block-group was taken from ACS table B25001.  This value estimates the 449 

number of dwellings including apartments and condominiums which can be greater than 450 

the number of properties and structures in some places. 451 
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reasons.  First, because the ZHVI is based currently on over 100 million of the 429 

131,704,730 homes (76%) from across the country23, it can be computed for any location 430 

in the U.S., while the HPI and CSI are available only for select metropolitan areas.  This 431 

is advantageous for our analyses of property values within each 1 km2 coastline segment 432 

both in and outside of metropolitan centers.  Second, Zillow uses all residential properties 433 

to compute an area’s ZHVI, while the HPI includes only those properties with mortgages 434 

held by Fannie Mae and Freddie Mac.  Furthermore, unlike the HPI and CSI, the ZHVI 435 

incorporates physical attributes of the lot and structures (such as square footage), 436 

assessed value, and prices of comparable properties.  The ZHVI estimates the value of 437 

residential dwellings.  It does not include commercial properties.   438 

On May 08, 2012, Zillow provided ZHVI estimates for each U.S. Census 2010 439 

block-group in every coastal state in the U.S. for which they had more than 30 valued 440 

properties.  115,571 of 134,723 block-groups contained a ZHVI.  Missing ZHVI values 441 

were replaced with the ZHVI from the closest block-group with data that was in the same 442 

census tract (the U.S. Census arranges tracts to encompass areas of similar socio-443 

economic characteristics).  If no block-groups within a tract contained ZHVI data, we 444 

replaced all missing values of the block-group with the average ZHVI from block-groups 445 

in adjacent census tracts.  We calculated property values for each 30 m raster cell in the 446 

dasymetric map of housing units by multiplying the number of units by the median home 447 

value for the census block-group.  The number of residential housing units per U.S. 448 

Census 2010 block-group was taken from ACS table B25001.  This value estimates the 449 

number of dwellings including apartments and condominiums which can be greater than 450 

the number of properties and structures in some places. 451 

Vulnerability of people and property to coastal hazards  452 

To assess the vulnerability of the people and property of the U.S. to coastal 453 

hazards, we analyzed the overlap between the coastal segments with the highest exposure 454 

to coastal hazards (Supplementary Fig. 3) and the data for the social metrics and property 455 

values produced from the dasymetric mapping.  We used the ArcGIS Focal Statistics tool 456 

to determine the average number of people, average number of families below poverty 457 

line, average number of individuals over 65, and average number of properties at a 30 m 458 

resolution (the native resolution of the NLCD that went into the dasymetric model) 459 

within a 3 km search radius from the center of each segment.  To produce estimates for 460 

total number of people, families below poverty line, individuals above 65, and number of 461 

properties for each 1 km2 of coastline segment, we scaled-up the average of each 30 m x 462 

30 m by multiplying by 1111 (1,000,000 m2 / 900 m2). 463 

Comparison of vulnerability outputs to observed coastal hazard data 464 

To assess the ability of the hazard index to capture risk, we compared the outputs 465 

from our analysis to observed data on hazard events and losses for the coastal U.S.  We 466 

used data from the Spatial Hazards Events and Losses Database for the United States 467 

(SHELDUS25).  SHELDUS is a county-level hazard data set for 18 different natural 468 

hazard event types such thunderstorms, hurricanes, floods, wildfires, and tornados from 469 

1960 to 2010.  The data are derived from several existing national data sources such as 470 

the National Climatic Data Center's monthly Storm Data publications.   471 

We compared our estimates for total population of people most exposed to coastal 472 

hazards to the observed number of fatalities per state due to coastal hazard events that 473 

occurred between 1995 and 2010.  We chose this time period because it is both current 474 
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(in this paper we used our index to assess current exposure to coastal hazards) and 475 

because the SHELDUS data from the previous time period (1985 to 1995) only includes 476 

events with greater than $50,000 in property or crop damages. Our coastal hazard index is 477 

designed to quantify exposure to hazards of all magnitudes, not just large events.  We 478 

used state as the unit of analysis where hazard events per state during the 1995 to 2010 479 

time period ranged from 3 in Connecticut to 390 in Florida, and fatalities ranged from 480 

zero in New Hampshire to 241 in Florida.  We chose state as a unit of analysis rather than 481 

county for two reasons.  One, several counties within coastal states experienced 482 

geographic changes (e.g. absorption of a county or the creation of a new county), but 483 

counties did not change states.  Second, SHELDUS divides fatalities from events that 484 

affected multiple regions equally among counties because often the sources that 485 

SHELDUS draws on list causalities without sufficient spatial resolution25.  Thus, we had 486 

the most confidence in the state level data. 487 

For the comparison to SHELDUS data, we used estimates of total population 488 

exposed to the greatest coastal hazard based on a cut-off value derived from the 489 

distribution of hazard values for the current sea level rise and habitat scenario only (upper 490 

quartile of hazard index are values >3.14).  We found a significant relationship between 491 

our estimates of total population exposed to the greatest coastal hazard and number of 492 

fatalities (N = 21 states, R2 = 0.70, P<0.0001).  Including the recent fatalities from 493 

Hurricane Sandy improved the ability of our index to explain variation among states in 494 

coastal hazard-related fatalities (N = 21 states, R2 = 0.75, P<0.0001, total coastal hazards 495 

= 1271, total coastal hazard related fatalities = 600, Supplementary Fig. 9), suggesting 496 

that our hazard index indicated higher vulnerability for the northeastern states than had 497 
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(in this paper we used our index to assess current exposure to coastal hazards) and 475 

because the SHELDUS data from the previous time period (1985 to 1995) only includes 476 

events with greater than $50,000 in property or crop damages. Our coastal hazard index is 477 

designed to quantify exposure to hazards of all magnitudes, not just large events.  We 478 

used state as the unit of analysis where hazard events per state during the 1995 to 2010 479 

time period ranged from 3 in Connecticut to 390 in Florida, and fatalities ranged from 480 

zero in New Hampshire to 241 in Florida.  We chose state as a unit of analysis rather than 481 

county for two reasons.  One, several counties within coastal states experienced 482 

geographic changes (e.g. absorption of a county or the creation of a new county), but 483 

counties did not change states.  Second, SHELDUS divides fatalities from events that 484 

affected multiple regions equally among counties because often the sources that 485 

SHELDUS draws on list causalities without sufficient spatial resolution25.  Thus, we had 486 

the most confidence in the state level data. 487 

For the comparison to SHELDUS data, we used estimates of total population 488 

exposed to the greatest coastal hazard based on a cut-off value derived from the 489 

distribution of hazard values for the current sea level rise and habitat scenario only (upper 490 

quartile of hazard index are values >3.14).  We found a significant relationship between 491 

our estimates of total population exposed to the greatest coastal hazard and number of 492 

fatalities (N = 21 states, R2 = 0.70, P<0.0001).  Including the recent fatalities from 493 

Hurricane Sandy improved the ability of our index to explain variation among states in 494 

coastal hazard-related fatalities (N = 21 states, R2 = 0.75, P<0.0001, total coastal hazards 495 

= 1271, total coastal hazard related fatalities = 600, Supplementary Fig. 9), suggesting 496 

that our hazard index indicated higher vulnerability for the northeastern states than had 497 

been observed until Hurricane Sandy.  Even excluding Florida (the state with the greatest 498 

number of fatalities and vulnerability of people to hazards), the relationship is still 499 

significant, although the amount of variance explained by our modeling and mapping is 500 

lower (N = 20 states, R2 = 0.25, P<0.03 for just SHELDUS data).  These comparisons 501 

suggest that fatalities per state per year are proportional to the number of people most 502 

exposed to coastal hazards as estimated by our hazard index and population mapping. 503 

Note that because we lacked the dasymetric mapping outputs for the ACS data for Hawaii 504 

and Alaska, the modeled versus observed analysis excludes those two states.  505 

We also compared the relationships between the version of our model that 506 

includes habitat as an explanatory variable and a version excluding habitat as an 507 

explanatory variable.  We found that a model including habitat as an explanatory variable 508 

explains 15% more of the variance than a model without habitat, which further supports 509 

our case for the importance of including natural habitats in analyses of vulnerability and 510 

hazard planning.  Note that excluding habitat as an explanatory variable is different than 511 

our “without habitat” scenario in the manuscript.  For the “without habitat” scenario we 512 

keep habitat in as an explanatory variable but set its rank to 5 which means buffering 513 

habitats are absent. 514 
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3. Supplementary Tables  544 
 545 
 546 
 547 
Supplementary Table 1. Coastal hazard index variables and ranking system.  Ranks for the last 548 
five variables are based on the distribution of values for these variables for all 1 km2 segments of 549 
the U.S. coastline across all five SLR scenarios. 550 
 551 
 552 

Rank Very low Low Moderate High Very high 
Variable 1 2 3 4 5 

 
Natural habitats 

 
coral reef; 
coastal forest 

 
high dune; 
emergent 
marsh; oyster 
reef 

 
low dune 

 
seagrass bed; 
canopy kelp 
forest; aquatic 
vegetation 

 
No habitat 

Shoreline type Rocky; high 
cliffs; fiord; 

fiard; seawalls 

Medium cliff; 
indented 

coast;  

Low cliff; 
glacial drift; 

alluvial plain; 
revetments; rip-

rap walls 

Cobble beach; 
estuary; 

lagoon; bluff 

Barrier beach; 
sand beach; mud 

flat; delta 

Relief 1st quantile 2nd quantile 3rd quantile 4th quantile 5th quantile 

Sea-level change 1st quantile 2nd quantile 3rd quantile 4th quantile 5th quantile 

Wind exposure 1st quantile 2nd quantile 3rd quantile 4th quantile 5th quantile 

Wave exposure 1st quantile 2nd quantile 3rd quantile 4th quantile 5th quantile 

Surge potential 1st quantile 2nd quantile 3rd quantile 4th quantile 5th quantile 
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Supplementary Table 2. Habitat rank and distance of effect for coastal vulnerability analysis. 553 
 554 
Habitat Rank Protective distance (m) 
Coral reefs 1 2000 
Coastal forests 1 2000 
Emergent marsh 2 1000 
Oyster reefs 2 100 
High dunes 2 300 
Low dunes 3 300 
Submerged aquatic vegetation 4 500 
Kelp forests 4 1500 
Seagrass beds 4 500 
 555 
 556 
 557 
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Supplementary Table 2. Habitat rank and distance of effect for coastal vulnerability analysis. 553 
 554 
Habitat Rank Protective distance (m) 
Coral reefs 1 2000 
Coastal forests 1 2000 
Emergent marsh 2 1000 
Oyster reefs 2 100 
High dunes 2 300 
Low dunes 3 300 
Submerged aquatic vegetation 4 500 
Kelp forests 4 1500 
Seagrass beds 4 500 
 555 
 556 
 557 

 558 
Supplementary Table 3. Seagrass data and source.  NOAA C-CAP stands for National 559 
Oceanographic and Atmospheric Administration Coastal Change Analysis Program. 560 
 561 

State Source Description URL for data or 
data contact 

 

Maine NOAA C-CAP Data were mapped by ME’s Department of 
Marine Resources from aerial imagery 
acquired between 1993 and 1997. The data 
set is a composite of the distribution during 
these two years.  We created an ArcGIS 
shapefile consisting of all polygons with 
attribute “Class” = submerged aquatic 
vegetation. 

http://www.csc.no
aa.gov/digitalcoas
t/data/benthiccove
r/download.html 
 
 

New 
Hampshire 

Dr. F.T. Short 
Seagrass Ecology 
Group, Univ. of 
New Hampshire 
(UNH); NH Dept. 
of Environmental 
Services 

Data were mapped in the Great Bay Estuary 
based on aerial photographs taken in 2004, 
2005, 2006, and 2007.  We created a 
composite dataset for all polygons with 
eelgrass present during these 4 years. 

 http://www.granit
.unh.edu/data/dow
nloadfreedata/dow
nloaddata.html 

Massachusetts MA Department of 
Environmental 
Protection 

Data were mapped by MA’s Department of 
Environment Protection from aerial imagery 
acquired in 2001 and 2006-7. We created a 
composite data set of the distribution during 
these years. 

http://www.mass.
gov 

Rhode Island Rhode Island 
Geographic 
Information System 
(RIGIS) 

Data were mapped by the Narragansett Bay 
Estuary Program based on aerial imagery 
collected in 2000 and classified according to 
the USFWS system.  We created a layer made 
up of all polygons and line segments with 
“Aquatic beds (eelgrass)” in the attribute table. 

http://www.edc.uri.e
du/RIGIS/data/data.a
spx?ISO=biota 

 

Connecticut CT Department of 
Energy and 
Environmental 
Protection 

Data were created by the USFWS National 
Wetlands Inventory, Region 5. Delineations of 
eelgrass beds were completed based on aerial 
imagery collected in 2002 and 2006.  We 
created a composite layer for these two years. 

http://www.ct.gov/de
p/cwp/view.asp?a=2
698&q=322898&de
pNav_GID=1707#C
oastalHabitat 

 

New York NOAA C-CAP Data were mapped by New York State 
Department of Coastal Resources from aerial 
imagery acquired between 2002.  

http://www.csc.noaa.
gov/digitalcoast/data
/benthiccover/downl
oad.html 

 

New Jersey Center for Remote 
Sensing and Spatial 
Analysis (CRSSA), 
Rutgers University.  

Data were mapped by CRSSA from aerial 
imagery acquired in 2009 for the Barnegat 
Bay-Little Egg Harbor Estuary.   

http://crssa.rutgers.e
du/projects/coastal/s
av/downloads.htm 
  

 

Chesapeake 
Bay 
(Maryland, 
Virginia) 

Virginia Institute of 
Marine Science 

Data were mapped baywide by the Virginia 
Institute of Marine Science from aerial 
imagery collected annually during 2000-2010.  
We created a composite data set of all years 
using any regions with eelgrass density classes 
1-4.  We excluded density class 0 which 
indicates no eelgrass.  

http://web.vims.edu/
bio/sav/gis_data.htm
l 
(56) 

 

North 
Carolina 

Albemarle-Pamlico 
National Estuary 
Program 

Data were mapped by NOAA-Beaufort and  
 Atkins North America, Inc for the entire 
North Carolina coast, as well as the Virginia 

http://portal.ncdenr.o
rg/web/apnep/resour
ces/maps 
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portion of the Albemarle-Pamlico Estuary 
from aerial imagery collected during 2006, 
2007, and 2008. 

 

Florida Florida Fish and 
Wildlife Conservation 
Commission (FWC), 
Fish and Wildlife 
Research Institute 
(FWRI), NOAA, 
Dade County; 
Southwest Florida 
Water Management 
District (SWFWMD)  

The first seagrass dataset for FL includes 
benthic data for Florida Bay, Biscayne Bay 
and the Florida Keys National Marine 
Sanctuary created from aerial imagery 
collected in 2001-2002 by FWC-FWRI, 
NOAA and Dade County.  The second dataset 
was mapped by SWFWMD from aerial 
imagery collected for St. Joseph's Sound and 
Clearwater Harbor, Charlotte Harbor, Tampa 
Bay, Sarasota Bay, Lemon Bay in 2006.  We 
created a composite layer for seagrass from 
these two layers. 

N/A – received data 
from NOAA Center 
for Coastal Fisheries 
and Habitat 
Research 

 

Alabama Mobile Bay Estuary 
Program 

Data were mapped from aerial imagery 
collected in 2009 for Mississippi Sound (AL), 
Mobile Bay, Mobile-Tensaw Delta, Little 
Lagoon, Bay La Launch, Perdido Bay, and 
their communicating tributaries. 

N/A – received data 
from TNC Gulf of 
MX Coastal 
Resilience 
http://gulfmex.coasta
lresilience.org/ 

 

Mississippi The Nature 
Conservancy 
Northern Gulf of 
Mexico Ecoregion 
(2000) 

Data were collected from a variety of sources 
which mapped the distribution of seagrass 
from aerial imagery (57) 

N/A – received data 
from TNC Gulf of 
MX Coastal 
Resilience 
http://gulfmex.coasta
lresilience.org/ 

 

Louisiana The Nature 
Conservancy 
Northern Gulf of 
Mexico Ecoregion 
(2000)  

Data were collected from a variety of sources 
which mapped the distribution of seagrass 
from aerial imagery (57) 

N/A – received data 
from TNC Gulf of 
MX Coastal 
Resilience 
http://gulfmex.coasta
lresilience.org/ 

 

Texas The Nature 
Conservancy 
Northern Gulf of 
Mexico Ecoregion 
(2000); 
NOAA C-CAP 

Data were collected from a variety of sources 
which mapped the distribution of seagrass 
from aerial imagery (57); data are also 
available for different bays in TX from NOAA 
C-CAP 

N/A – received data 
from TNC Gulf of 
MX Coastal 
Resilience 
http://gulfmex.coasta
lresilience.org/ 

 

California Pacific States Marine 
Fisheries Commission 

Data are a compilation of currently available 
seagrass GIS data sets for the west coast of the 
United States. The source data were acquired 
over a large range of time periods (1987-
2003), at many different spatial resolutions 
using a variety of methods, including aerial 
photography, videography, multispectral 
sensors, sonar, and field surveys.  

http://marinehabitat.
psmfc.org/pacific-
coast-groundfish-
efh-gis-data.html 

 

Oregon Pacific Marine 
Fisheries Commission 
(coastal); 
 
Environmental 
Protection Agency 
(EPA, bays) 

Coastal data are a compilation of currently 
available seagrass GIS data sets for the west 
coast of the United States. The source data 
were acquired over a large range of time 
periods (1987-2003), at many different spatial 
resolutions using a variety of methods, 
including aerial photography, videography, 
multispectral sensors, sonar, and field surveys. 

http://marinehabitat.
psmfc.org/pacific-
coast-groundfish-
efh-gis-data.html 
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portion of the Albemarle-Pamlico Estuary 
from aerial imagery collected during 2006, 
2007, and 2008. 

 

Florida Florida Fish and 
Wildlife Conservation 
Commission (FWC), 
Fish and Wildlife 
Research Institute 
(FWRI), NOAA, 
Dade County; 
Southwest Florida 
Water Management 
District (SWFWMD)  

The first seagrass dataset for FL includes 
benthic data for Florida Bay, Biscayne Bay 
and the Florida Keys National Marine 
Sanctuary created from aerial imagery 
collected in 2001-2002 by FWC-FWRI, 
NOAA and Dade County.  The second dataset 
was mapped by SWFWMD from aerial 
imagery collected for St. Joseph's Sound and 
Clearwater Harbor, Charlotte Harbor, Tampa 
Bay, Sarasota Bay, Lemon Bay in 2006.  We 
created a composite layer for seagrass from 
these two layers. 

N/A – received data 
from NOAA Center 
for Coastal Fisheries 
and Habitat 
Research 

 

Alabama Mobile Bay Estuary 
Program 

Data were mapped from aerial imagery 
collected in 2009 for Mississippi Sound (AL), 
Mobile Bay, Mobile-Tensaw Delta, Little 
Lagoon, Bay La Launch, Perdido Bay, and 
their communicating tributaries. 

N/A – received data 
from TNC Gulf of 
MX Coastal 
Resilience 
http://gulfmex.coasta
lresilience.org/ 

 

Mississippi The Nature 
Conservancy 
Northern Gulf of 
Mexico Ecoregion 
(2000) 

Data were collected from a variety of sources 
which mapped the distribution of seagrass 
from aerial imagery (57) 

N/A – received data 
from TNC Gulf of 
MX Coastal 
Resilience 
http://gulfmex.coasta
lresilience.org/ 

 

Louisiana The Nature 
Conservancy 
Northern Gulf of 
Mexico Ecoregion 
(2000)  

Data were collected from a variety of sources 
which mapped the distribution of seagrass 
from aerial imagery (57) 

N/A – received data 
from TNC Gulf of 
MX Coastal 
Resilience 
http://gulfmex.coasta
lresilience.org/ 

 

Texas The Nature 
Conservancy 
Northern Gulf of 
Mexico Ecoregion 
(2000); 
NOAA C-CAP 

Data were collected from a variety of sources 
which mapped the distribution of seagrass 
from aerial imagery (57); data are also 
available for different bays in TX from NOAA 
C-CAP 

N/A – received data 
from TNC Gulf of 
MX Coastal 
Resilience 
http://gulfmex.coasta
lresilience.org/ 

 

California Pacific States Marine 
Fisheries Commission 

Data are a compilation of currently available 
seagrass GIS data sets for the west coast of the 
United States. The source data were acquired 
over a large range of time periods (1987-
2003), at many different spatial resolutions 
using a variety of methods, including aerial 
photography, videography, multispectral 
sensors, sonar, and field surveys.  

http://marinehabitat.
psmfc.org/pacific-
coast-groundfish-
efh-gis-data.html 

 

Oregon Pacific Marine 
Fisheries Commission 
(coastal); 
 
Environmental 
Protection Agency 
(EPA, bays) 

Coastal data are a compilation of currently 
available seagrass GIS data sets for the west 
coast of the United States. The source data 
were acquired over a large range of time 
periods (1987-2003), at many different spatial 
resolutions using a variety of methods, 
including aerial photography, videography, 
multispectral sensors, sonar, and field surveys. 

http://marinehabitat.
psmfc.org/pacific-
coast-groundfish-
efh-gis-data.html 
 
 
 
 

 

 
Bay data were mapped from aerial imagery 
collected in Alsea, Coos, Nestucca, Salmon, 
Tillamook, Umpqua and Yaquina estuaries 
from 2004 to 2007.  

 
N/A received from 
EPA  
 

Washington Washington 
Department of 
Natural Resources; 
 
 
 
 
 
 
Pacific Marine 
Fisheries Commission 

The first dataset was created using the 
ShoreZone Mapping System with aerial videos 
collected between 1994 and 2000. We created 
a data for seagrass by selecting all coastal 
segments classified as Zostera (ZOS_UNIT = 
patchy or continuous) or surfgrass 
(SURF_UNIT = patchy or continuous). 
 
The second dataset is a compilation of 
currently available seagrass GIS data sets for 
the west coast of the United States. The source 
data were acquired over a large range of time 
periods (1987-2003), at many different spatial 
resolutions using a variety of methods, 
including aerial photography, videography, 
multispectral sensors, sonar, and field surveys. 

http://fortress.wa.go
v/dnr/app1/dataweb/
dmmatrix.html 
 
 
 
 
 
http://marinehabitat.
psmfc.org/pacific-
coast-groundfish-
efh-gis-data.html 

 

Alaska NOAA Alaska 
Fisheries; 
Coastal and Oceans 
Inc. ShoreZone  

Data were created using the ShoreZone 
Mapping System with aerial videos collected 
for more than 47,000 km of shoreline, from 
Bristol Bay to southern Southeast Alaska at 
the US-Canada border in 2001-2003. We 
created a dataset for just seagrass by selecting 
all coastal segments classified as Zostera 
(ZOS_UNIT = patchy or continuous) or 
surfgrass (SURF_UNIT = patchy or 
continuous). 

N/A – we received 
the data from 
Coastal and Oceans 
Inc. 
 
http://alaskafisheries.
noaa.gov/shorezone/ 

 

 562 
 563 
 564 
 565 
 566 
 567 
 568 
 569 
 570 
 571 
 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
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Supplementary Table 4. Kelp forest data and source. 585 
 586 
State Source Description URL for data or data 

contact 
California California 

Department of 
Fish and Game 

Data were mapped by CA DFG 
from aerial imagery collected 
annually from 2000-2010. We 
created a composite dataset for 
these years. 

http://www.dfg.ca.gov/mari
ne/gis/naturalresource.asp 
 

Oregon Oregon 
Department of 
Fish and Wildlife 

Data were mapped by ODFW and 
Ecoscan Resources Data from aerial 
imagery collected during 1990, 
1996, 1999. 

http://www.oregonocean.inf
o/index.php?option=com_co
ntent&view=article&id=338
&Itemid=134 

Washington Washington State 
Department of 
Natural Resources 

Data for WA’s saltwater shorelines 
were created using the ShoreZone 
Mapping System with aerial videos 
collected between 1994 and 2000. 
We created a kelp layer by selecting 
all coastal segments classified as 
Nereocystis (NER_UNIT = patchy 
or continuous) or Macrocystis 
(MAC_UNIT = patchy or 
continuous). 
 
Data for the outer coast and Straight 
de Juan de Fuca were mapped by 
WDNR Nearshore Habitat Program 
and NOAA Olympic Coast NMS 
using aerial imagery collected 
annually from 1989-1992 and 1994-
2004. These data include two 
species of floating kelp, Nereocystis 
luetkeana and Macrocystis 
integrifolia. 

http://fortress.wa.gov/dnr/ap
p1/dataweb/dmmatrix.html 

Alaska NOAA Alaska 
Fisheries; 
Coastal and 
Oceans Inc. 
Shorezone 

Data were created using the 
ShoreZone Mapping System with 
aerial videos collected for more than 
47,000 km of shoreline, from 
Bristol Bay to southern Southeast 
Alaska at the US-Canada border in 
2001-2003. We selected coastal 
segments classified as Nereocystis 
(NER_UNIT), Macrocystis 
(MAC_UNIT) and Alaria 
(ALF_UNIT) were classified as 
"patchy" or "continuous.” 

N/A – we received the data 
from Coastal and Oceans 
Inc. 
 
http://alaskafisheries.noaa.g
ov/shorezone/ 

 587 
 588 
 589 
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Supplementary Table 4. Kelp forest data and source. 585 
 586 
State Source Description URL for data or data 

contact 
California California 

Department of 
Fish and Game 

Data were mapped by CA DFG 
from aerial imagery collected 
annually from 2000-2010. We 
created a composite dataset for 
these years. 

http://www.dfg.ca.gov/mari
ne/gis/naturalresource.asp 
 

Oregon Oregon 
Department of 
Fish and Wildlife 

Data were mapped by ODFW and 
Ecoscan Resources Data from aerial 
imagery collected during 1990, 
1996, 1999. 

http://www.oregonocean.inf
o/index.php?option=com_co
ntent&view=article&id=338
&Itemid=134 

Washington Washington State 
Department of 
Natural Resources 

Data for WA’s saltwater shorelines 
were created using the ShoreZone 
Mapping System with aerial videos 
collected between 1994 and 2000. 
We created a kelp layer by selecting 
all coastal segments classified as 
Nereocystis (NER_UNIT = patchy 
or continuous) or Macrocystis 
(MAC_UNIT = patchy or 
continuous). 
 
Data for the outer coast and Straight 
de Juan de Fuca were mapped by 
WDNR Nearshore Habitat Program 
and NOAA Olympic Coast NMS 
using aerial imagery collected 
annually from 1989-1992 and 1994-
2004. These data include two 
species of floating kelp, Nereocystis 
luetkeana and Macrocystis 
integrifolia. 

http://fortress.wa.gov/dnr/ap
p1/dataweb/dmmatrix.html 

Alaska NOAA Alaska 
Fisheries; 
Coastal and 
Oceans Inc. 
Shorezone 

Data were created using the 
ShoreZone Mapping System with 
aerial videos collected for more than 
47,000 km of shoreline, from 
Bristol Bay to southern Southeast 
Alaska at the US-Canada border in 
2001-2003. We selected coastal 
segments classified as Nereocystis 
(NER_UNIT), Macrocystis 
(MAC_UNIT) and Alaria 
(ALF_UNIT) were classified as 
"patchy" or "continuous.” 

N/A – we received the data 
from Coastal and Oceans 
Inc. 
 
http://alaskafisheries.noaa.g
ov/shorezone/ 

 587 
 588 
 589 

Supplementary Table 5. Oyster reef data and source.   590 
 591 
State Source Description URL for data or contact 
Maryland Maryland Department 

of National Resources 
Dataset indicates areas where oyster 
repletion activities have taken place 
between 1992 and 2009.  Data were 
delineated from coordinates collected 
in the field. 

http://dnrweb.dnr.state.md
.us/gis/data/ 
 

Virginia Center for Coastal 
Resources 
Management; Eastern 
Shore Laboratory 
Virginia Institute of 
Marine Science 

The first dataset designates areas 
within Chesapeake Bay where oyster 
reefs have been restored. 
 
The second dataset reflects the 
location of natural reefs on the seaside 
of Virginia's Eastern Shore in 2007-
2008. 

N/A - received data 
directly from VIMS 

North 
Carolina 

Shellfish and Benthic 
Mapping Program, 
Resource Enhance-
ment Section, North 
Carolina Division of 
Marine Fisheries 

Data were mapped from benthic 
surveys of intertidal and subtidal 
shellfish habitat conducted by the NC 
DMF Shellfish Mapping program 
from 1989-2012.   

http://portal.ncdenr.org/w
eb/mf/contact-dmf  
 

South 
Carolina 

South Carolina 
Department of 
Natural Resources 
(SCDNR) 

Data for intertidal oyster reefs were 
mapped from aerial photographs 
taken between 2003-2006 by Photo 
Science Inc. and SCDNR. 

http://www.dnr.sc.gov/GI
S/descoysterbed.html 

Georgia University of Georgia 
Marine Extension; 
Service; Sapelo Island 
National Estuarine 
Research Reserve; 
Georgia Department 
of Natural Resources  

Data for intertidal oyster reefs were 
mapped from field surveys conducted 
in  Duplin River, Sapelo Island, 
Chatham, Bryan, Liberty and 
McIntosh Counties during 2008-2011. 
  

N/A – received the data 
from MAREX 
http://www.marex.uga.ed
u/ 

Florida Florida Fish and 
Wildlife Conservation 
Commission-Fish and 
Wildlife Research 
Institute 

Data represent oyster coverage at 
study areas available to Florida Fish 
and Wildlife Institute (FWRI) as of 
2011. Source collection methods and 
dates (1992 to 2007) vary. 

N/A – received data from 
TNC Gulf of MX Coastal 
Resilience 
http://gulfmex.coastalresil
ience.org/ 

Alabama Alabama Dept. of 
Conservation, Marine 
Resources Division  

Data show locations of oyster reefs in 
1995. 

Same as FL 

Mississippi Mississippi 
Department of Marine 
Resources 

Data delineate location of natural 
reefs and areas enhanced via cultch 
plants.  Data were updated as of 2010.  

Same as FL 

Louisiana N/A N/A N/A 
Texas Texas A&M 

University; Texas 
Parks and Wildlife; 
Lower Texas Coast 
Oil Spill Response 
Mapping Project 

Composite of five datasets indicating 
locations of oyster reefs in Galveston 
Bay, Corpus Bay, Copano Bay, 
Lavaca Bay and Matagorda Bay at 
various times between the mid-1990s 
and present day.  Data were amassed 
via field mapping techniques, acoustic 
techniques, and hand drawn based on 
known locations of reefs. 

Same as FL 
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Supplementary Table 6.  Linking NLCD2006 LULC and USGS Dasymetric Mapping Tool. 593 
 594 

NLCD2006 LULC USGS Dasymetric Mapping Density Class  

Developed, High Intensity (1) high-density residential 

Developed, Medium Intensity (2) low-density residential 

Developed, Low Intensity (3) non-urban inhabited 

Developed, Open Space (4) uninhabited 

All other LULC classes  
(e.g. water, forest, wetlands, etc.) (4) uninhabited 

Developed LULC cells  
occurring on public lands (4) uninhabited 
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Developed, High Intensity (1) high-density residential 

Developed, Medium Intensity (2) low-density residential 

Developed, Low Intensity (3) non-urban inhabited 

Developed, Open Space (4) uninhabited 

All other LULC classes  
(e.g. water, forest, wetlands, etc.) (4) uninhabited 

Developed LULC cells  
occurring on public lands (4) uninhabited 

Supplementary Table 7.  Protection of total people and property from storms and SLR in 2100 (A2) for the highest coastal hazard segments in 595 
each state.  Data are the difference in the number of people and value of property protected with and without habitats included in the model. 596 
 597 

State 
Protected coastline 

(km) 
Protected people 

(thousands) Protect poor families 
Protected elderly 

(thousands) 
Protected property 
value (billions $) 

HI 180 NA NA NA 12.1 
AK 1736 NA NA NA 0.8 
WA 233 25.5 476 4.6 2.9 
OR 229 12.1 377 3.0 2.5 
CA 250 108.9 1753 12.4 24.7 
TX 723 30.7 1038 4.5 2.4 
LA 666 1.7 42 0.4 0.3 
MS 61 11.7 411 1.7 0.5 
AL 132 9.1 249 1.9 1.8 
FL 1526 356.0 6139 97.7 80.7 
GA 149 1.5 23 0.6 0.5 
SC 249 14.4 135 3.0 7.2 
NC 1602 70.1 1170 12.7 21.4 
VA 789 55.1 1075 7.2 5.0 
MD 989 68.3 684 11.6 12.3 
DE 94 16.8 236 2.9 2.5 
NJ 244 96.0 2458 16.2 22.3 
NY 457 326.6 7345 59.3 79.1 
CT 87 55.4 698 9.6 10.9 
RI 95 31.1 384 5.2 5.0 

MA 182 93.3 1707 16.0 18.1 
NH 2 0.3 3 0.1 0.1 
ME 536 30.4 578 6.3 3.7 
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 598 
4.  Supplementary Figures and Legends 599 
A. 600 

 601 
B. 602 

 603 
 604 
Supplementary Figure 1. Conceptual diagram showing A) steps in coastal vulnerability 605 
analysis for a single scenario and B) a list of the ten climate by habitat scenarios and 606 
range of hazard values for the whole country for each scenario. 607 
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B. 602 

 603 
 604 
Supplementary Figure 1. Conceptual diagram showing A) steps in coastal vulnerability 605 
analysis for a single scenario and B) a list of the ten climate by habitat scenarios and 606 
range of hazard values for the whole country for each scenario. 607 

 608 

 609 
 610 
Supplementary Figure 2. Rise in sea level for the A) current, B) trend, C) B1, D) A2, 611 
and E) high scenarios. 612 
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 613 
 614 
 615 

 616 
 617 

 618 

 619 

Supplementary Figure 3. Frequency distribution of results from the coastal hazard index 620 
for all SLR and habitat scenarios for each of the 5 regions.  Lowest 25% < 2.36; highest 621 
25 % > 3.36.  Today 16% of the United States coastline is exposed to ‘high hazard’ 622 
(greater than 3.36), and these high hazard coastal areas harbor 1.3 million people, 623 
250,000 elderly, 30,000 families below the poverty line, and $300 billion in property 624 
value (Fig. 1).  Fifty-three percent of today’s coastline and 4.8 million people currently 625 
fall in the intermediate coastal hazard class (2.36 to 3.36).  The remaining 31% of the 626 
coastline (index < 2.36) and 2.3 million people are least exposed to coastal hazards 627 
relative to all other locations and scenarios. 628 

Lowest   Intermediate           Highest 
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 629 

 630 
Supplementary Figure 4. Distribution of the nine coastal habitat types and ranks for the 631 
United States. 632 

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange 37

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCLIMATE1944

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nclimate1944


 633 
 634 

 635 
Supplementary Figure 5. Coastal hazard index categories with habitats for each 1 km2 636 
segment for all five regions for A) current, B) trend, C) B1, D) A2, and E) high SLR 637 
scenarios. 638 
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 634 

 635 
Supplementary Figure 5. Coastal hazard index categories with habitats for each 1 km2 636 
segment for all five regions for A) current, B) trend, C) B1, D) A2, and E) high SLR 637 
scenarios. 638 

 639 

 640 
Supplementary Figure 6. Coastal hazard index categories without habitats for each 1 641 
km2 segment for all five regions for A) current, B) trend, C) B1, D) A2, and E) high SLR 642 
scenarios. 643 
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 644 

 645 
 646 
Supplementary Figure 7. Distribution of ranks for each of the seven variables in the 647 
coastal hazard index for each 1 km2 segment of the five regions.  648 
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 645 
 646 
Supplementary Figure 7. Distribution of ranks for each of the seven variables in the 647 
coastal hazard index for each 1 km2 segment of the five regions.  648 

 649 

 650 
 651 
Supplementary Figure 8. Distribution of SLR ranks for the four future SLR scenarios 652 
(Trend, B1, A2, High) for all 1 km2 segments in each of the five regions.  653 
 654 
 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
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 663 
 664 
Supplementary Figure 9. Scatterplot of linear regression between observed fatalities  665 
from coastal hazards (SHELDUS and Hurricane Sandy fatalities) and modeled number of 666 
people most exposed to coastal hazards in the current scenario (upper quantile of index 667 
value > 3.14).  N = 21 states, R2 = 0.75 P <0.0001.  Point in the upper right is Florida.  668 
 669 

 670 

 671 

 672 

 673 

 674 

 675 

 676 
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